CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3381-3393.DOI: 10.11949/0438-1157.20220592
• Reviews and monographs • Previous Articles Next Articles
Honglong HU1(), Zhigang ZHENG2, Weihong ZHU1()
Received:
2022-04-27
Revised:
2022-08-22
Online:
2022-09-06
Published:
2022-08-05
Contact:
Weihong ZHU
通讯作者:
朱为宏
作者简介:
胡宏龙(1995—),男,博士,huhlecust@foxmail.com
基金资助:
CLC Number:
Honglong HU, Zhigang ZHENG, Weihong ZHU. Progress of chiral nematic liquid-crystal systems with light-driven diarylethenes[J]. CIESC Journal, 2022, 73(8): 3381-3393.
胡宏龙, 郑致刚, 朱为宏. 基于光控二芳基乙烯的手性向列相液晶体系研究进展[J]. 化工学报, 2022, 73(8): 3381-3393.
Fig.5 Chemical structures of chiral DAE molecule 3 (a)[68] and molecule 4 (b)[69], and their corresponding reflection spectra under different light irradiation
Fig.6 Chemical structures of chiral DAE molecule 5 (a)[70], molecule 6 (b) [71] and molecule 7 (c) [72], and their corresponding reflection spectra and chirality inversion under different light irradiation
Fig.8 Modulation of cholesteric liquid-crystal helical direction: (a) schematic illustration of near-infrared light driven chiral helix inversion[73]; (b) reflection spectra of the heliconical superstructures modulated by electric field and light[48]; (c) three-dimensional modulation of light-driven cholesteric helical axis[49]
Fig.9 Multicolor pattern display: (a) RGB three-color pattern display[69]; (b) polarization microscopy image of the liquid crystal droplet in reflection mode[50]; (c) reversible, erasable, gradient, angle-dependent multiple anti-counterfeiting technologies[51]
Fig.10 Light modulated laser emission: (a) laser spectra of the heliconical superstructures modulated by electric field and light[48]; (b) light manipulated laser emission and its corresponding reflection spectra[51]; (c) schematic diagram of the quadri-dimensional manipulable laser[74]
1 | Yashima E, Ousaka N, Taura D, et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions[J]. Chemical Reviews, 2016, 116(22): 13752-13990. |
2 | Sharma V, Crne M, Park J O, et al. Structural origin of circularly polarized iridescence in jeweled beetles[J]. Science, 2009, 325(5939): 449-451. |
3 | Chung W J, Oh J W, Kwak K, et al. Biomimetic self-templating supramolecular structures[J]. Nature, 2011, 478(7369): 364-368. |
4 | Geelhaar T, Griesar K, Reckmann B. 125 Years of liquid crystals—a scientific revolution in the home[J]. Angewandte Chemie International Edition, 2013, 52(34): 8798-8809. |
5 | Bremer M, Kirsch P, Klasen-Memmer M, et al. The TV in your pocket: development of liquid-crystal materials for the new millennium[J]. Angewandte Chemie International Edition, 2013, 52(34): 8880-8896. |
6 | Wöhrle T, Wurzbach I, Kirres J, et al. Discotic liquid crystals[J]. Chemical Reviews, 2016, 116(3): 1139-1241. |
7 | Akbari A, Sheath P, Martin S T, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide[J]. Nature Communications, 2016, 7: 10891. |
8 | Yadav S P, Singh S. Carbon nanotube dispersion in nematic liquid crystals: an overview[J]. Progress in Materials Science, 2016, 80: 38-76. |
9 | Wei T, Chen P, Tang M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics[J]. Advanced Optical Materials, 2020, 8(10): 1902033. |
10 | Mitov M. Cholesteric liquid crystals with a broad light reflection band[J]. Advanced Materials, 2012, 24(47): 6260-6276. |
11 | Li Y F, Prince E, Cho S, et al. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2137-2142. |
12 | Ma L L, Liu C, Wu S B, et al. Programmable self-propelling actuators enabled by a dynamic helical medium[J]. Science Advances, 2021, 7(32): eabh3505. |
13 | Coursault D, Grand J, Zappone B, et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays[J]. Advanced Materials, 2012, 24(11): 1461-1465. |
14 | Pelliser L, Manceau M, Lethiec C, et al. Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals[J]. Advanced Functional Materials, 2015, 25(11): 1719-1726. |
15 | Rožič B, Fresnais J, Molinaro C, et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects[J]. ACS Nano, 2017, 11(7): 6728-6738. |
16 | Kim Y H, Yoon D K, Jeong H S, et al. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications[J]. Advanced Functional Materials, 2011, 21(4): 610-627. |
17 | Pieraccini S, Masiero S, Ferrarini A, et al. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications[J]. Chemical Society Reviews, 2011, 40(1): 258-271. |
18 | Lin S Y, Gutierrez-Cuevas K G, Zhang X F, et al. Fluorescent photochromic α-cyanodiarylethene molecular switches: an emerging and promising class of functional diarylethene[J]. Advanced Functional Materials, 2021, 31(7): 2007957. |
19 | Qin L, Liu X J, He K Y, et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color[J]. Nature Communications, 2021, 12: 699. |
20 | Mathews M, Zola R S, Hurley S, et al. Light-driven reversible handedness inversion in self-organized helical superstructures[J]. Journal of the American Chemical Society, 2010, 132(51): 18361-18366. |
21 | Qin L, Gu W, Wei J, et al. Piecewise phototuning of self-organized helical superstructures[J]. Advanced Materials, 2018, 30(8): 1704941. |
22 | Pijper D, Jongejan M G M, Meetsma A, et al. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch[J]. Journal of the American Chemical Society, 2008, 130(13): 4541-4552. |
23 | Bisoyi H K, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications[J]. Chemical Reviews, 2016, 116(24): 15089-15166. |
24 | Wang Y, Li Q. Light-driven chiral molecular switches or motors in liquid crystals[J]. Advanced Materials, 2012, 24(15): 1926-1945. |
25 | Tamaoki N, Song S, Moriyama M, et al. Rewritable full-color recording in a photon mode[J]. Advanced Materials, 2000, 12(2): 94-97. |
26 | Wang H, Bisoyi H K, Urbas A M, et al. Reversible circularly polarized reflection in a self-organized helical superstructure enabled by a visible-light-driven axially chiral molecular switch[J]. Journal of the American Chemical Society, 2019, 141(20): 8078-8082. |
27 | Eelkema R, Pollard M M, Katsonis N, et al. Rotational reorganization of doped cholesteric liquid crystalline films[J]. Journal of the American Chemical Society, 2006, 128(44): 14397-14407. |
28 | White T J, Cazzell S A, Freer A S, et al. Widely tunable, photoinvertible cholesteric liquid crystals[J]. Advanced Materials, 2011, 23(11): 1389-1392. |
29 | Gerber P R. On the determination of the cholesteric screw sense by the grandjean-cano-method[J]. Zeitschrift Für Naturforschung A, 1980, 35(6): 619-622. |
30 | Heppke G, Oestreicher F. Notizen: Bestimmung des helixdrehsinnes cholesterischer phasen mit der grandjean-cano-methode/ Determination of the helical sense of cholesteric liquid crystals using the grandjean-cano method[J]. Zeitschrift Für Naturforschung A, 1977, 32(8): 899-902. |
31 | Heppke G, Oestreicher F. Determination of the cholesteric screw sense[J]. Molecular Crystals and Liquid Crystals, 1978, 41(9): 245-249. |
32 | Irie M, Mohri M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives[J]. The Journal of Organic Chemistry, 1988, 53(4): 803-808. |
33 | Irie M, Fukaminato T, Matsuda K, et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators[J]. Chemical Reviews, 2014, 114(24): 12174-12277. |
34 | Kathan M, Eisenreich F, Jurissek C, et al. Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems[J]. Nature Chemistry, 2018, 10(10): 1031-1036. |
35 | Qi J, Chen C, Zhang X Y, et al. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes[J]. Nature Communications, 2018, 9: 1848. |
36 | Han J L, Zhang J, Zhao T H, et al. Photoswitchable photon upconversion from turn-on mode fluorescent diarylethenes[J]. CCS Chemistry, 2021, 3(1): 665-674. |
37 | Celani P, Ottani S, Olivucci M, et al. What happens during the picosecond lifetime of 2A1 cyclohexa-1,3-diene? A CAS-SCF study of the cyclohexadiene/hexatriene photochemical interconversion[J]. Journal of the American Chemical Society, 1994, 116(22): 10141-10151. |
38 | Fukaminato T, Hirose T, Doi T, et al. Molecular design strategy toward diarylethenes that photoswitch with visible light[J]. Journal of the American Chemical Society, 2014, 136(49): 17145-17154. |
39 | Hebner T S, Podgórski M, Mavila S, et al. Shape permanence in diarylethene-functionalized liquid-crystal elastomers facilitated by thiol-anhydride dynamic chemistry[J]. Angewandte Chemie International Edition, 2022, 61(11): e202116522. |
40 | Hou L L, Zhang X Y, Cotella G F, et al. Optically switchable organic light-emitting transistors[J]. Nature Nanotechnology, 2019, 14(4): 347-353. |
41 | Zhang J H, Wang H P, Zhang L Y, et al. Coordinative-to-covalent transformation, isomerization dynamics, and logic gate application of dithienylethene based photochromic cages[J]. Chemical Science, 2020, 11(33): 8885-8894. |
42 | Cheng H B, Zhang S C, Bai E Y, et al. Future-oriented advanced diarylethene photoswitches: from molecular design to spontaneous assembly systems[J]. Advanced Materials, 2022, 34(16): 2108289. |
43 | Datta S, Takahashi S, Yagai S. Nanoengineering of curved supramolecular polymers: toward single-chain mesoscale materials[J]. Accounts of Materials Research, 2022, 3(2): 259-271. |
44 | Li R J, Tessarolo J, Lee H, et al. Multi-stimuli control over assembly and guest binding in metallo-supramolecular hosts based on dithienylethene photoswitches[J]. Journal of the American Chemical Society, 2021, 143(10): 3865-3873. |
45 | Okada D, Lin Z H, Huang J S, et al. Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints[J]. Materials Horizons, 2020, 7(7): 1801-1808. |
46 | Li Z Q, Wang G N, Ye Y X, et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting[J]. Angewandte Chemie International Edition, 2019, 58(50): 18025-18031. |
47 | Yokoyama Y, Hosoda N, Osano Y T, et al. Absolute stereochemistry and CD spectra of resolved enantiomers of the colored form of a photochromic dithienylethene[J]. Chemistry Letters, 1998, 27(11): 1093-1094. |
48 | Yuan C L, Huang W B, Zheng Z G, et al. Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices[J]. Science Advances, 2019, 5(10): eaax9501. |
49 | Zheng Z G, Li Y N, Bisoyi H K, et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light[J]. Nature, 2016, 531(7594): 352-356. |
50 | Fan J, Li Y N, Bisoyi H K, et al. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets[J]. Angewandte Chemie International Edition, 2015, 54(7): 2160-2164. |
51 | Zheng Z G, Hu H L, Zhang Z P, et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches[J]. Nature Photonics, 2022, 16(3): 226-234. |
52 | Yang H, Li M Q, Li C, et al. Unraveling dual aggregation-induced emission behavior in steric-hindrance photochromic system for super resolution imaging[J]. Angewandte Chemie International Edition, 2020, 59(22): 8560-8570. |
53 | Li M Q, Chen L J, Cai Y S, et al. Light-driven chiral switching of supramolecular metallacycles with photoreversibility[J]. Chem, 2019, 5(3): 634-648. |
54 | Li Y N, Wang M F, White T J, et al. Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures[J]. Angewandte Chemie International Edition, 2013, 52(34): 8925-8929. |
55 | Wang L, Dong H, Li Y N, et al. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(12): 4480-4483. |
56 | Wang H, Bisoyi H K, Wang L, et al. Photochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switch[J]. Angewandte Chemie International Edition, 2018, 57(6): 1627-1631. |
57 | Qin L, Wei J, Yu Y L. Photostationary RGB selective reflection from self-organized helical superstructures for continuous photopatterning[J]. Advanced Optical Materials, 2019, 7(18): 1900430. |
58 | Zhang Q, Qu D H, Tian H, et al. Bottom-up: can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials? [J]. Matter, 2020, 3(2): 355-370. |
59 | Eelkema R, Pollard M M, Vicario J, et al. Nanomotor rotates microscale objects[J]. Nature, 2006, 440(7081): 163. |
60 | Chen W C, Lee Y W, Chen C T. Diastereoselective, synergistic dual-mode optical switch with integrated chirochromic helicene and photochromic bis-azobenzene moieties[J]. Organic Letters, 2010, 12(7): 1472-1475. |
61 | Yamaguchi T, Inagawa T, Nakazumi H, et al. Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal[J]. Chemistry of Materials, 2000, 12(4): 869-871. |
62 | Yamaguchi T, Inagawa T, Nakazumi H, et al. Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene[J]. Journal of Materials Chemistry, 2001, 11(10): 2453-2458. |
63 | Li Y N, Urbas A, Li Q. Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality[J]. The Journal of Organic Chemistry, 2011, 76(17): 7148-7156. |
64 | Rameshbabu K, Urbas A, Li Q. Synthesis and characterization of thermally irreversible photochromic cholesteric liquid crystals[J]. The Journal of Physical Chemistry B. 2011, 115(13): 3409-3415. |
65 | Denekamp C, Feringa B L. Optically active diarylethenes for multimode photoswitching between liquid-crystalline phases[J]. Advanced Materials, 1998, 10(14): 1080-1082. |
66 | van Leeuwen T, Pijper T C, Areephong J, et al. Reversible photochemical control of cholesteric liquid crystals with a diamine-based diarylethene chiroptical switch[J]. Journal of Materials Chemistry, 2011, 21(9): 3142-3146. |
67 | Hayasaka H, Miyashita T, Nakayama M, et al. Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants[J]. Journal of the American Chemical Society, 2012, 134(8): 3758-3765. |
68 | Li Y N, Li Q. Photochemically reversible and thermally stable axially chiral diarylethene switches[J]. Organic Letters, 2012, 14(17): 4362-4365. |
69 | Li Y N, Urbas A, Li Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure[J]. Journal of the American Chemical Society, 2012, 134(23): 9573-9576. |
70 | Li Y N, Wang M F, Urbas A, et al. A photoswitchable and thermally stable axially chiral dithienylperfluorocyclopentene dopant with high helical twisting power[J]. Journal of Materials Chemistry C, 2013, 1(25): 3917-3923. |
71 | Li Y N, Wang M F, Wang H, et al. Rationally designed axially chiral diarylethene switches with high helical twisting power[J]. Chemistry - A European Journal, 2014, 20(49): 16286-16292. |
72 | Li Y N, Xue C M, Wang M F, et al. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures[J]. Angewandte Chemie International Edition, 2013, 52(51): 13703-13707. |
73 | Wang L, Dong H, Li Y N, et al. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer[J]. Advanced Materials, 2015, 27(12): 2065-2069. |
74 | Hu H L, Liu B H, Li M Q, et al. A quadri-dimensional manipulable laser with an intrinsic chiral photoswitch[J]. Advanced Materials, 2022, 34(15): 2110170. |
[1] | ZHANG Shiman, ZHANG Fushi, DENG Aiming. Backbone diarylethene polymers with rigid and flexible structures [J]. CIESC Journal, 2015, 66(11): 4716-4721. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||