CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3369-3380.DOI: 10.11949/0438-1157.20220588
• Reviews and monographs • Previous Articles Next Articles
Lei ZHONG1(), Xueqing QIU1,2(), Wenli ZHANG1,2,3()
Received:
2022-04-25
Revised:
2022-05-31
Online:
2022-09-06
Published:
2022-08-05
Contact:
Xueqing QIU, Wenli ZHANG
通讯作者:
邱学青,张文礼
作者简介:
钟磊(1995—),男,博士研究生,zhongleilucky@126.com
基金资助:
CLC Number:
Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries[J]. CIESC Journal, 2022, 73(8): 3369-3380.
钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380.
Add to citation manager EndNote|Ris|BibTeX
1 | 程晓琴, 李慧君, 赵振新, 等. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. 新型炭材料, 2021, 36(1):93-105. |
Cheng X Q, Li H J, Zhao Z X, et al. The use of in situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. New Carbon Materials, 2021, 36(1):93-105. | |
2 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
Wang S, Gan L H, Lyu L. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729. | |
3 | Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
4 | Svinterikos E, Zuburtikudis I, Al-Marzouqi M. Electrospun lignin-derived carbon micro- and nanofibers: a review on precursors, properties, and applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13868-13893. |
5 | Moriwake H, Kuwabara A, Fisher C A J, et al. Why is sodium-intercalated graphite unstable? [J]. RSC Advances, 2017, 7(58): 36550-36554. |
6 | Khan R J, Lau C Y, Guan J Y, et al. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products[J]. Bioresource Technology, 2022, 346: 126419. |
7 | 钟磊, 王超, 吕高金, 等. 低共熔溶剂在木质素分离方面的研究进展[J]. 林产化学与工业, 2020, 40(3): 12-22. |
Zhong L, Wang C, Lyu G J, et al. A review of deep eutectic solvents for lignin isolation[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 12-22. | |
8 | 吴彩文, 黄丽菁, 邹春阳, 等. 木质素在储能领域中的应用研究进展[J]. 储能科学与技术, 2020, 9(6): 1737-1746. |
Wu C W, Huang L J, Zou C Y, et al. Research progress of the lignin in application energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. | |
9 | Wen F W, Zhang W L, Jian W B, et al. Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors[J]. Chemical Engineering Science, 2022, 255: 117672. |
10 | Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
11 | Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
12 | Liu H Y, Xu T, Liu K, et al. Lignin-based electrodes for energy storage application[J]. Industrial Crops and Products, 2021, 165: 113425. |
13 | Tenhaeff W E, Rios O, More K, et al. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
14 | Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. |
15 | Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593. |
16 | Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
17 | Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. |
18 | Zhang L P, Wang W, Lu S F, et al. Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
19 | Hou H S, Qiu X Q, Wei W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. |
20 | Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): 2000283. |
21 | Huang S F, Li Z P, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials, 2018, 28(10): 1706294. |
22 | Zhang W L, Yin J, Lin Z Q, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176: 1136-1142. |
23 | 王才威, 杨东杰, 邱学青, 等. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300. |
Wang C W, Yang D J, Qiu X Q, et al. Applications of lignin-derived porous carbons for electrochemical energy storage[J]. Progress in Chemistry, 2022, 34(2): 285-300. | |
24 | Jian W B, Zhang W L, Wu B C, et al. Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5425-5438. |
25 | Xi Y B, Yang D J, Qiu X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops and Products, 2018, 124: 747-754. |
26 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
27 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
28 | Huang S, Yang D J, Zhang W L, et al. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery[J]. Microporous and Mesoporous Materials, 2021, 317: 111004. |
29 | Chen F, Wu L, Zhou Z P, et al. MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability[J]. Chinese Chemical Letters, 2019, 30(1): 197-202. |
30 | Du L L, Wu W, Luo C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics, 2018, 319: 77-82. |
31 | Yi X L, He W, Zhang X D, et al. Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries[J]. Electrochimica Acta, 2017, 232: 550-560. |
32 | Zhou Z P, Chen F, Kuang T R, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
33 | Chang Z Z, Yu B J, Wang C Y. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries[J]. Electrochimica Acta, 2015, 176: 1352-1357. |
34 | Cheng J Y, Yi Z L, Wang Z B, et al. Towards optimized Li-ion storage performance: insight on the oxygen species evolution of hard carbon by H2 reduction[J]. Electrochimica Acta, 2020, 337: 135736. |
35 | Du Y F, Sun G H, Li Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
36 | Wang S C, Bai J X, Innocent M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
37 | Choi D I, Lee J N, Song J, et al. Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2013, 17(9): 2471-2475. |
38 | Wang S X, Yang L P, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
39 | Stojanovska E, Pampal E S, Kilic A, et al. Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices[J]. Composites Part B: Engineering, 2019, 158: 239-248. |
40 | Culebras M, Geaney H, Beaucamp A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. |
41 | Yu F Q, Li Y L, Jia M, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/ micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685. |
42 | Yeon J S, Park S H, Suk J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. |
43 | Liu Y Y, Merinov B V, Goddard W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. |
44 | 曹斌, 李喜飞. 钠离子电池炭基负极材料研究进展[J]. 物理化学学报, 2020, 36(5): 89-104. |
Cao B, Li X F. Recent progress on carbon-based anode materials for Na-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 89-104. | |
45 | Qiu S, Xiao L F, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
46 | Bai P X, He Y W, Zou X X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
47 | Li C H, Sun Y, Wu Q J, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications, 2020, 56(45): 6078-6081. |
48 | Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662. |
49 | Chen T Q, Liu Y, Pan L K, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A, 2014, 2(12): 4117. |
50 | Jia H, Sun N, Dirican M, et al. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44368-44375. |
51 | 王华燕, 陈慧鑫, 张桥保, 等. 生物质碳材料作为钠/钾离子电池负极材料的研究进展[J]. 中国材料进展, 2021, 40(8): 596-606. |
Wang H Y, Chen H X, Zhang Q B, et al. Research progress of biomass carbon materials as anode materials for sodium/potassium ion batteries[J]. Materials China, 2021, 40(8): 596-606. | |
52 | Chen S L, Feng F, Ma Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447. |
53 | Huang X, Yu H, Chen J, et al. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration[J]. Advanced Materials, 2014, 26(8): 1296-1303. |
54 | Zhang X T, Zhou J S, Liu C C, et al. A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8837-8843. |
55 | Jin J, Yu B J, Shi Z Q, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources, 2014, 272: 800-807. |
56 | Zhang H M, Zhang W F, Ming H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 341: 280-288. |
57 | Matei Ghimbeu C, Zhang B, Martinez de Yuso A, et al. Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: impact of lignin grade[J]. Carbon, 2019, 153: 634-647. |
58 | Lin X Y, Liu Y Z, Tan H, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323. |
59 | Navarro-Suárez A M, Saurel D, Sánchez-Fontecoba P, et al. Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications[J]. Journal of Power Sources, 2018, 397: 296-306. |
60 | Peuvot K, Hosseinaei O, Tomani P, et al. Lignin based electrospun carbon fiber anode for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1984-A1990. |
61 | 王学慧, 张文哲, 王焕磊, 等. 先进碳材料在钾离子电池中的应用[J]. 硅酸盐学报, 2021, 49(6): 1091-1104. |
Wang X H, Zhang W Z, Wang H L, et al. Application of advanced carbon materials for potassium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2021, 49(6): 1091-1104. | |
62 | Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175. |
63 | Jian Z L, Xing Z Y, Bommier C, et al. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3): 1501874. |
64 | Wu X, Chen Y L, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
65 | Yang J L, Ju Z C, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): 1700104. |
66 | Zhang W L, Sun M L, Yin J, et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions[J]. Nano Energy, 2021, 87: 106184. |
67 | Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science, 2020, 7(5): 1902547. |
68 | Liu X X, Ji T Y, Guo H, et al. Effects of crystallinity and defects of layered carbon materials on potassium storage: a review and prediction[J]. Electrochemical Energy Reviews, 2022, 5(2): 401-433. |
69 | Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901379. |
70 | Jiang K R, Tan X H, Zhai S L, et al. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis[J]. Nano Research, 2021, 14(12): 4664-4673. |
71 | Wu Z R, Zou J, Zhang Y, et al. Lignin-derived hard carbon anode for potassium-ion batteries: interplay among lignin molecular weight, material structures, and storage mechanisms[J]. Chemical Engineering Journal, 2022, 427: 131547. |
72 | Zhang W L, Sun M L, Yin J, et al. Accordion-like carbon with high nitrogen doping for fast and stable K ion storage[J]. Advanced Energy Materials, 2021, 11(41): 2101928. |
73 | Huang S F, Lv Y, Wen W, et al. Three-dimensional hierarchical porous hard carbon for excellent sodium/potassium storage and mechanism investigation[J]. Materials Today Energy, 2021, 20: 100673. |
74 | Jian Z L, Hwang S, Li Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(26): 1700324. |
[1] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[9] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[14] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[15] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||