CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4399-4409.DOI: 10.11949/0438-1157.20220669
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinyu ZHANG1(), Xiaohong YANG1,2(), Yannan ZHANG1, Jiakun XU1, Xiao GUO1, Rui TIAN1,3
Received:
2022-05-10
Revised:
2022-09-08
Online:
2022-11-02
Published:
2022-10-05
Contact:
Xiaohong YANG
张欣宇1(), 杨晓宏1,2(), 张燕楠1, 徐佳锟1, 郭枭1, 田瑞1,3
通讯作者:
杨晓宏
作者简介:
张欣宇(1981—),女,博士研究生,讲师,1031491945@qq.com
基金资助:
CLC Number:
Xinyu ZHANG, Xiaohong YANG, Yannan ZHANG, Jiakun XU, Xiao GUO, Rui TIAN. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. CIESC Journal, 2022, 73(10): 4399-4409.
张欣宇, 杨晓宏, 张燕楠, 徐佳锟, 郭枭, 田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409.
Add to citation manager EndNote|Ris|BibTeX
物理量 | 数值 | ||
---|---|---|---|
石蜡 | 铜 | 铝 | |
密度ρ/(kg/m3) | 750 | 8978 | 2719 |
比热容cp /(J/(kg·K)) | 2000 | 381 | 879 |
热导率λ /(W/(m·K)) | 0.2 | 387.6 | 202.4 |
动力黏度μ /(kg/(m·s)) | 0.001 | — | — |
体积膨胀系数α/K-1 | 0.00085 | — | — |
相变热Δh/(kJ/kg) | 255 | — | — |
凝固温度Ts/K | 315.15 | — | — |
熔化温度Tl /K | 317.15 | — | — |
Table 1 Thermophysical properties of PCM, aluminum and copper[29]
物理量 | 数值 | ||
---|---|---|---|
石蜡 | 铜 | 铝 | |
密度ρ/(kg/m3) | 750 | 8978 | 2719 |
比热容cp /(J/(kg·K)) | 2000 | 381 | 879 |
热导率λ /(W/(m·K)) | 0.2 | 387.6 | 202.4 |
动力黏度μ /(kg/(m·s)) | 0.001 | — | — |
体积膨胀系数α/K-1 | 0.00085 | — | — |
相变热Δh/(kJ/kg) | 255 | — | — |
凝固温度Ts/K | 315.15 | — | — |
熔化温度Tl /K | 317.15 | — | — |
1 | Palacios A, Barreneche C, Navarro M E, et al. Thermal energy storage technologies for concentrated solar power—a review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. |
2 | Settino J, Sant T, Micallef C, et al. Overview of solar technologies for electricity, heating and cooling production[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 892-909. |
3 | 张欣宇, 杨晓宏, 曹泽宇, 等. 太阳能斯特林混凝土储热系统传热特性研究[J]. 太阳能学报, 2022, 43(5): 213-219. |
Zhang X Y, Yang X H, Cao Z Y, et al. Heat transfer performance of concrete thermal storage system for solar energy striling[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 213-219. | |
4 | Guarino S, Buscemi A, Ciulla G, et al. A dish-stirling solar concentrator coupled to a seasonal thermal energy storage system in the southern Mediterranean Basin: a cogenerative layout hypothesis[J]. Energy Conversion and Management, 2020, 222: 113228. |
5 | 李椿, 王志华, 王建春, 等. 壳管式相变储能换热器性能研究与场协同效应分析[J]. 太阳能学报, 2020, 41(3): 226-233. |
Li C, Wang Z H, Wang J C, et al. Performance study and field synergy analysis of shell and tube phase change energy storage heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 226-233. | |
6 | Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
7 | 杨超, 徐阳, 郑章靖. 二维梯级多孔强化相变储热装置熔化过程研究[J]. 工程热物理学报, 2021, 42(11): 2946-2953. |
Yang C, Xu Y, Zheng Z J. Study on melting process of latent heat thermal energy storage unit strengthened by two-dimensional graded metal foam[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2946-2953. | |
8 | 杨喆, 刘飞, 张涛, 等. TPMS 多孔铝-石蜡复合相变材料蓄热过程数值模拟及实验[J].化工进展, 2022, 41(9): 4918-4927. |
Yang Z, Liu F, Zhang T, et al. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. | |
9 | Xu Y, Li M J, Zheng Z J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
10 | Khan Z, Khan Z A. Experimental and numerical investigations of nano-additives enhanced paraffin in a shell-and-tube heat exchanger: a comparative study[J]. Applied Thermal Engineering, 2018, 143: 777-790. |
11 | Yuan Y P, Zhang N, Li T Y, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study[J]. Energy, 2016, 97: 488-497. |
12 | Zhu Z Q, Huang Y K, Hu N, et al. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio[J]. Applied Thermal Engineering, 2018, 128: 966-972. |
13 | 王成君, 段志英, 苏琼, 等. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080. |
Wang C J, Duan Z Y, Su Q, et al. Research progress in photo-thermal conversion and storage of multistage porous carbon supported composite phase change materials[J]. Materials Reports, 2020, 34(23): 23074-23080. | |
14 | Xu H T, Wang N, Zhang C Y, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: 115409. |
15 | Bie Y, Li M, Malekian R, et al. Effect of phase transition temperature and thermal conductivity on the performance of latent heat storage system[J]. Applied Thermal Engineering, 2018, 135: 218-227. |
16 | Khan L A, Khan M M. Role of orientation of fins in performance enhancement of a latent thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 175: 115408. |
17 | Yu C, Zhang X, Chen X, et al. Melting performance enhancement of a latent heat storage unit using gradient fins[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119330. |
18 | Liu X D, Huang Y P, Zhang X, et al. Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins[J]. Applied Thermal Engineering, 2020, 179: 115749. |
19 | Safari V, Abolghasemi H, Kamkari B. Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins[J]. Renewable Energy, 2021, 174: 102-121. |
20 | Huang Y P, Cao D C, Sun D K, et al. Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121920. |
21 | Zhang C B, Li J, Chen Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: 114102. |
22 | Ma B, Zhang X Y, Wang L, et al. Numerical study on melting performance improvement with fractal tree-shaped fins[J]. Physics of Fluids, 2022, 34(4): 047107. |
23 | 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004. |
Guo Z Y, Huang S Y. Field Synergy Principle and New Technology of Enhanced Heat Transfer[M]. Beijing: China Electric Power Press, 2004. | |
24 | 李志信, 过增元. 对流传热优化的场协同理论[M]. 北京: 科学出版社, 2010. |
Li Z X, Guo Z Y. Field Synergy Theory for Optimization of Convective Heat Transfer[M]. Beijing: Science Press, 2010. | |
25 | 陈洁璐. 基于场协同理论的翅片管蒸发器管外强化换热研究[D]. 武汉: 华中科技大学, 2017. |
Chen J L. Study on heat transfer enhancement of fin-and-tube evaporator based on field synergy theory[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
26 | Gu X, Zheng Z Y, Xiong X C, et al. Heat transfer and flow resistance characteristics of helical baffle heat exchangers with twisted oval tube[J]. Journal of Thermal Science, 2022, 31(2): 370-378. |
27 | Yao P T, Zhai Y L, Li Z H, et al. Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle[J]. Case Studies in Thermal Engineering, 2021, 25: 100963. |
28 | Cui W Z, Mao D X, Lin B, et al. Field synergy analysis on the mechanism of heat transfer enhancement by using nanofluids[J]. Case Studies in Thermal Engineering, 2019, 16: 100554. |
29 | 饶中浩, 刘臣臻. 相变储能实验与分析[M]. 徐州: 中国矿业大学出版社, 2018. |
Rao Z H, Liu C Z. Experiment and Analysis of Phase Change Energy Storage[M]. Xuzhou: China University of Mining & Technology Press, 2018. | |
30 | Vogel J, Felbinger J, Johnson M. Natural convection in high temperature flat plate latent heat thermal energy storage systems[J]. Applied Energy, 2016, 184: 184-196. |
31 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
32 | Vogel J, Thess A. Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage[J]. Applied Thermal Engineering, 2019, 148: 147-159. |
33 | Al-Abidi A A, Mat S B, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
34 | Seddegh S, Wang X L, Henderson A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. |
35 | Duan J, Xiong Y L, Yang D. Study on the effect of multiple spiral fins for improved phase change process[J]. Applied Thermal Engineering, 2020, 169: 114966. |
36 | Ho J Y, See Y S, Leong K C, et al. An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure[J]. Energy Conversion and Management, 2021, 245: 114608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||