CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4366-4376.DOI: 10.11949/0438-1157.20220670
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yongliang SHEN(), Pengwei ZHANG, Shuli LIU()
Received:
2022-05-10
Revised:
2022-06-30
Online:
2022-11-02
Published:
2022-10-05
Contact:
Shuli LIU
通讯作者:
刘淑丽
作者简介:
沈永亮(1996—),男,博士研究生,shenyl0104@163.com
基金资助:
CLC Number:
Yongliang SHEN, Pengwei ZHANG, Shuli LIU. Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC Journal, 2022, 73(10): 4366-4376.
沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376.
Add to citation manager EndNote|Ris|BibTeX
参数 | 硬脂酸(PCM1) | 石蜡(PCM2) | 月桂酸(PCM3) | 多孔介质 |
---|---|---|---|---|
密度/(kg/m2) | 941 (s) 848 (l)[ | 810 (s) 771 (l)[ | 1007 (s) 870 (l) [ | 800 |
比热容/(J/(kg·K)) | 2380[ | 2100[ | 2117[ | 2100 |
热导率/(W/(m·K)) | 0.172[ | 0.2[ | 0.192[ | 2.0 |
黏度/(Pa·s) | 3.4×10-3[ | 4.05×10-3 [ | 5.336×10-3[ | — |
膨胀系数/K-1 | 4.0×10-5 | 5.0×10-5 | 4.5×10-5 | — |
潜热/(J/kg) | 227160 | 182240 | 187740 | — |
固相线温度/K | 340.66 | 330.83 | 316.65 | — |
熔化温度/K | 343.77 | 333.85 | 321.35 | — |
Table 1 Physical parameters of PCMs and porous media
参数 | 硬脂酸(PCM1) | 石蜡(PCM2) | 月桂酸(PCM3) | 多孔介质 |
---|---|---|---|---|
密度/(kg/m2) | 941 (s) 848 (l)[ | 810 (s) 771 (l)[ | 1007 (s) 870 (l) [ | 800 |
比热容/(J/(kg·K)) | 2380[ | 2100[ | 2117[ | 2100 |
热导率/(W/(m·K)) | 0.172[ | 0.2[ | 0.192[ | 2.0 |
黏度/(Pa·s) | 3.4×10-3[ | 4.05×10-3 [ | 5.336×10-3[ | — |
膨胀系数/K-1 | 4.0×10-5 | 5.0×10-5 | 4.5×10-5 | — |
潜热/(J/kg) | 227160 | 182240 | 187740 | — |
固相线温度/K | 340.66 | 330.83 | 316.65 | — |
熔化温度/K | 343.77 | 333.85 | 321.35 | — |
几何参数 | 数值 |
---|---|
相变换热系统储热器总高度 | 1200 mm |
PCM腔体高度 | 900 mm |
PCM填充高度 | 810 mm |
密封盖高度 | 100 mm |
外管内径 | 200 mm |
中管内径 | 140 mm |
内管内径 | 60 mm |
外管、中管和内管的厚度 | 3 mm |
直型肋片厚度×长度×高度 | 2 mm×30 mm×900 mm |
储热器之间距离 | 600 mm |
储热器之间的管道长度 | 2540 mm |
传热流体管道直径 | 116 mm |
Table 2 The specific geometric parameters of the physical model of the latent heat storage unit
几何参数 | 数值 |
---|---|
相变换热系统储热器总高度 | 1200 mm |
PCM腔体高度 | 900 mm |
PCM填充高度 | 810 mm |
密封盖高度 | 100 mm |
外管内径 | 200 mm |
中管内径 | 140 mm |
内管内径 | 60 mm |
外管、中管和内管的厚度 | 3 mm |
直型肋片厚度×长度×高度 | 2 mm×30 mm×900 mm |
储热器之间距离 | 600 mm |
储热器之间的管道长度 | 2540 mm |
传热流体管道直径 | 116 mm |
孔隙率分布 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
正孔隙率梯度 | 0.85 | 0.90 | 0.95 |
均匀孔隙率梯度 | 0.90 | 0.90 | 0.90 |
负孔隙率梯度 | 0.95 | 0.90 | 0.85 |
Table 3 Three cases of gradient porosity of PCMs
孔隙率分布 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
正孔隙率梯度 | 0.85 | 0.90 | 0.95 |
均匀孔隙率梯度 | 0.90 | 0.90 | 0.90 |
负孔隙率梯度 | 0.95 | 0.90 | 0.85 |
1 | Sarı A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications[J]. Energy Conversion and Management, 2003, 44(14): 2277-2287. |
2 | Nomura T, Okinaka N, Akiyama T. Technology of latent heat storage for high temperature application: a review[J]. ISIJ International, 2010, 50(9): 1229-1239. |
3 | 李京卫, 唐志伟, 王昊. 低温相变蓄热材料性能研究及在移动蓄热装置中应用[J]. 化工进展, 2021, 40(S1): 163-167. |
Li J W, Tang Z W, Wang H. Properties of low temperature phase change heat storage materials and their applications in mobile heat storage devices[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 163-167. | |
4 | Mahian O, Ghafarian S, Sarrafha H, et al. Phase change materials in solar photovoltaics applied in buildings: an overview[J]. Solar Energy, 2021, 224: 569-592. |
5 | 张晨宇, 王宁, 徐洪涛, 等. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
Zhang C Y, Wang N, Xu H T, et al. Photovoltaic and thermal performance of solar PV/T system with phase change material[J]. CIESC Journal, 2020, 71(S1): 361-367. | |
6 | 林浩楠. 相变储热材料的研究进展[J]. 冶金与材料, 2021, 41(6): 41-42. |
Lin H N. Research progress of phase change materials[J]. Metallurgy and Materials, 2021, 41(6): 41-42. | |
7 | Jebasingh E, Arasu A. A comprehensive review on nanoparticles dispersed PCM, latent heat of nanoparticles dispersed PCM and thermal conductivity of nanoparticles dispersed PCM[J]. Energy Storage Materials, 2019, 24: 52-74. |
8 | Liu H Q, Ahmad S, Shi Y, et al. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling[J]. Energy, 2021, 231: 120869. |
9 | Farid M M, Kanzawa A. Thermal performance of a heat storage module using with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111(2): 152-157. |
10 | Rudra M B V, Nidhul K, Gumtapure V. Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage[J]. Solar Energy, 2021, 214: 377-392. |
11 | Elsanusi O S, Nsofor E C. Melting of multiple PCMs with different arrangements inside a heat exchanger for energy storage[J]. Applied Thermal Engineering, 2021, 185: 116046. |
12 | Xu H J, Zhao C Y. Thermal performance of cascaded thermal storage with phase-change materials (PCMs)(Ⅰ): Steady cases[J]. International Journal of Heat and Mass Transfer, 2017, 106: 932-944. |
13 | 郑章靖, 徐阳, 何雅玲. 梯级多孔介质强化管壳式相变储热器性能研究[J]. 工程热物理学报, 2019, 40(3): 605-611. |
Zheng Z J, Xu Y, He Y L. Study on the performance of a shell-and-tube latent-heat storage unit enhanced by porous medium with graded porosity[J]. Journal of Engineering Thermophysics, 2019, 40(3): 605-611. | |
14 | 程熙文, 翟晓强, 郑春元. 梯级相变蓄冷换热器的性能分析及优化[J]. 上海交通大学学报, 2016, 50(9): 1500-1505, 1513. |
Cheng X W, Zhai X Q, Zheng C Y. Performance analysis and optimization of a cascade PCM cold storage heat exchanger[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9): 1500-1505, 1513. | |
15 | Christopher S, Parham K, Mosaffa A H, et al. A critical review on phase change material energy storage systems with cascaded configurations[J]. Journal of Cleaner Production, 2021, 283: 124653. |
16 | Cui H T, Yuan X G, Hou X B. Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23(18): 2353-2361. |
17 | 杨兆晟. 低温梯级相变蓄热器传热特性及优化研究[D]. 北京: 北京建筑大学, 2020. |
Yang Z S. Study on heat transfer characteristics and optimization of low temperature cascaded phase change thermal storage device[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. | |
18 | 杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, 38(10): 4389-4402. |
Yang Z S, Zhang Q L, Zhang W J, et al. Research progress on heat transfer enhancement methods for medium temperature latent heat thermal energy storage systems[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4389-4402. | |
19 | Mahdi J M, Mohammed H I, Hashim E T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system[J]. Applied Energy, 2020, 257: 113993. |
20 | Mahdi J M, Lohrasbi S, Ganji D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676. |
21 | Yadav C, Sahoo R R. Exergy and energy comparison of organic phase change materials based thermal energy storage system integrated with engine exhaust[J]. Journal of Energy Storage, 2019, 24: 100773. |
22 | Huang P R, Wei G S, Cui L, et al. Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin[J]. Applied Thermal Engineering, 2021, 189: 116702. |
23 | Kumar R, Verma P. An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit[J]. Journal of Energy Storage, 2020, 30: 101396. |
24 | 夏莉, 张鹏, 王如竹. 套管式相变储能单元的强化换热[J]. 化工学报, 2011, 62(S1): 37-41. |
Xia L, Zhang P, Wang R Z. Heat transfer enhancement in shell-and-tube latent thermal energy storage units[J]. CIESC Journal, 2011, 62(S1): 37-41. | |
25 | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
26 | Ahmed N, Elfeky K E, Lu L, et al. Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications[J]. Renewable Energy, 2020, 152: 684-697. |
27 | Raoux S, Ielmini D, Wuttig M, et al. Phase change materials[J]. MRS Bulletin, 2012, 37(2): 118-123. |
28 | 李扬, 陶于兵. 多孔复合相变材料电池热管理模型及结构优化[J]. 科学通报, 2020, 65(S1): 213-221. |
Li Y, Tao Y B. Battery thermal management model and structure optimization of porous composite phase change material[J]. Chinese Science Bulletin, 2020, 65(S1): 213-221. | |
29 | Klett J W, McMillan A D, Gallego N C, et al. The role of structure on the thermal properties of graphitic foams[J]. Journal of Materials Science, 2004, 39: 3659-3676. |
30 | Chen S B, Saleem S, Alghamdi M N, et al. Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins[J]. Case Studies in Thermal Engineering, 2021, 25: 100939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||