CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1519-1527.DOI: 10.11949/0438-1157.20221562
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hao ZHANG1(), Huibin XU1,2(), Jian GAO1, Dihong LIU1, Zehua ZHOU1
Received:
2022-12-05
Revised:
2023-02-23
Online:
2023-06-02
Published:
2023-04-05
Contact:
Huibin XU
张浩1(), 徐惠斌1,2(), 高健1, 刘帝宏1, 周泽华1
通讯作者:
徐惠斌
作者简介:
张浩(1998—),男,硕士研究生,zhangh199812@163.com
基金资助:
CLC Number:
Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement[J]. CIESC Journal, 2023, 74(4): 1519-1527.
张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Schematic of the visualized tilt-fall experimental setup with mechanical vibration coupled with auxiliary fluidized gas1—Roots blower; 2—gas storage tank; 3—ball valve; 4—rotor flow meter; 5—vibration table; 6—vibration control box; 7—bed; 8—removable inclined bottom plate; 9—gate; 10—beaker; 11—electronic balance
编号 | 种类 | 平均直径dp/mm | 真实密度ρp/(g·ml-1) | 堆积密度ρb/(g·ml-1) | 空隙率ε |
---|---|---|---|---|---|
Particle 1 | 塑料珠 | 2.0 | 1.19 | 0.75 | 0.37 |
Particle 2 | 玻璃珠 | 2.0 | 2.23 | 1.39 | 0.38 |
Particle 3 | 氧化锆珠 | 2.0 | 2.93 | 1.82 | 0.38 |
Table 1 Properties of experimental particles
编号 | 种类 | 平均直径dp/mm | 真实密度ρp/(g·ml-1) | 堆积密度ρb/(g·ml-1) | 空隙率ε |
---|---|---|---|---|---|
Particle 1 | 塑料珠 | 2.0 | 1.19 | 0.75 | 0.37 |
Particle 2 | 玻璃珠 | 2.0 | 2.23 | 1.39 | 0.38 |
Particle 3 | 氧化锆珠 | 2.0 | 2.93 | 1.82 | 0.38 |
编号 | 成分 | 表面张力σ/(mN·m-1) | 液体动力黏度μ/(mPa·s) | |
---|---|---|---|---|
CaCl2溶液/ %(mass) | TritonX-100/ %(mass) | |||
1 | 35 | 0 | 86.2 | 15.2 |
2 | 35 | 0.02 | 66.0 | 15.2 |
3 | 35 | 0.08 | 54.1 | 15.2 |
4 | 35 | 0.26 | 47.6 | 15.2 |
Table 2 Properties of experimental liquids
编号 | 成分 | 表面张力σ/(mN·m-1) | 液体动力黏度μ/(mPa·s) | |
---|---|---|---|---|
CaCl2溶液/ %(mass) | TritonX-100/ %(mass) | |||
1 | 35 | 0 | 86.2 | 15.2 |
2 | 35 | 0.02 | 66.0 | 15.2 |
3 | 35 | 0.08 | 54.1 | 15.2 |
4 | 35 | 0.26 | 47.6 | 15.2 |
振动强度Γ | 工作电压UΓ /V | 工作电流IΓ /A |
---|---|---|
0.4 | 323 | 0.4 |
0.8 | 323 | 0.6 |
1.2 | 324 | 0.9 |
1.6 | 324 | 1.1 |
1.9 | 324 | 1.3 |
Table 3 Comparison of vibration intensity Γ with operating current IΓ and voltage UΓ
振动强度Γ | 工作电压UΓ /V | 工作电流IΓ /A |
---|---|---|
0.4 | 323 | 0.4 |
0.8 | 323 | 0.6 |
1.2 | 324 | 0.9 |
1.6 | 324 | 1.1 |
1.9 | 324 | 1.3 |
1 | Mitarai N, Nori F. Wet granular materials[J]. Advances in Physics, 2006, 55(1/2): 1-45. |
2 | Zhou H, Xiong Y. Conveying mechanisms of dense-phase pneumatic conveying of pulverized lignite in horizontal pipe under high pressure[J]. Powder Technology, 2020, 363: 7-22. |
3 | Fries L, Antonyuk S, Heinrich S, et al. DEM-CFD modeling of a fluidized bed spray granulator[J]. Chemical Engineering Science, 2011, 66(11): 2340-2355. |
4 | Wu D L, Zhou P, Wang G, et al. A theoretical study of particle coalescence criteria for inelastic collisions of wet particles[J]. Chemical Engineering Science, 2021, 243: 116770. |
5 | Zaalouk A K, Zabady F I. Effect of moisture content on angle of repose and friction coefficient of wheat grain[J]. MISR Journal of Agricultural Engineering, 2009, 26(1): 418-427. |
6 | Jia D, Cathary O, Peng J, et al. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow[J]. Fuel Processing Technology, 2015, 138: 471-482. |
7 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of liquid action mechanisms on hydrodynamics in liquid-containing gas-solid fluidized bed reactor[J]. Chemical Engineering Journal, 2016, 285: 121-127. |
8 | Zhou Y F, Li H, Zhu M Y, et al. Effects of liquid content and surface tension on fluidization characteristics in a liquid-containing gas-solid fluidized bed: a CFD-DEM study[J]. Chemical Engineering and Processing - Process Intensification, 2020, 153: 107928. |
9 | Xu H B, Wang W Y, Ma C, et al. Recent advances in studies of wet particle fluidization characteristics[J]. Powder Technology, 2022, 409: 117805. |
10 | Passos M L, Mujumdar A S. Effect of cohesive forces on fluidized and spouted beds of wet particles[J]. Powder Technology, 2000, 110(3): 222-238. |
11 | Sutkar V S, Deen N G, Patil A V, et al. Experimental study of hydrodynamics and thermal behavior of a pseudo-2D spout-fluidized bed with liquid injection[J]. AIChE Journal, 2015, 61(4): 1146-1159. |
12 | Anand A, Curtis J S, Wassgren C R, et al. Experimental study of wet cohesive particles discharging from a rectangular hopper [J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4545-4551. |
13 | Kalman H. Effect of moisture content on flowability: angle of repose, tilting angle, and hausner ratio[J]. Powder Technology, 2021, 393: 582-596. |
14 | Pan S Y, Ma J L, Liu D Y, et al. Theoretical and experimental insight into the homogeneous expansion of wet particles in a fluidized bed[J]. Powder Technology, 2022, 397: 117016. |
15 | Zhang Y W, Abatzoglou N, Hudon S, et al. Dynamics of heat-sensitive pharmaceutical granules dried in a horizontal fluidized bed combined with a screw conveyor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 167: 108516. |
16 | Xu H B, Gao J, Zhong W Q, et al. Experimental study on the fluidization discharging characteristics of Geldart-C kaolin powders in a blow tank with pulsed gas[J]. Advanced Powder Technology, 2022, 33: 103372. |
17 | Barletta D, Poletto M. Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations[J]. Powder Technology, 2012, 225: 93-100. |
18 | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
Tang T Q, He Y R. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed[J]. CIESC Journal, 2022, 73(6): 2636-2648. | |
19 | Liu Y, Ohara H, Tsutsumi A. Pulsation-assisted fluidized bed for the fluidization of easily agglomerated particles with wide size distributions[J]. Powder Technology, 2017, 316: 388-399. |
20 | Ma C, Xu H B, Zhong W Q, et al. Experimental study on fluidization characteristics of vinegar residue in a vibrated fluidized bed[J]. Advanced Powder Technology, 2022, 33(8): 103698. |
21 | Xu H B, Zhong W Q, Shao Y J, et al. Experimental study on mixing behaviors of wet particles in a bubbling fluidized bed[J]. Powder Technology, 2018, 340: 26-33. |
22 | 潘苏阳. 含液气固流化床内液体的迁移机制研究[D]. 南京: 东南大学, 2021. |
Pan S Y. Liquid transport mechanism during liquid-containing fluidization[D]. Nanjing: Southeast University, 2021. | |
23 | Hemati M, Cherif R, Saleh K, et al. Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics[J]. Powder Technology, 2003, 130(1/3):18-34. |
24 | 高健, 钟文琪, 徐惠斌, 等. 湿颗粒的振动流化特性实验研究[J]. 东南大学学报(自然科学版), 2018, 48(1): 71-77. |
Gao J, Zhong W Q, Xu H B, et al. Experimental study on vibrating fluidization characteristics of wet particles[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 71-77. | |
25 | Rossetti D, Pepin X, Simons S J R. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process[J]. Journal of Colloid and Interface Science, 2003, 261(1): 161-169. |
26 | Pitois O, Moucheront P, Chateau X. Liquid bridge between two moving spheres: an experimental study of viscosity effects[J]. Journal of Colloid and Interface Science, 2000, 231(1): 26-31. |
27 | Boyce C M. Gas-solid fluidization with liquid bridging: a review from a modeling perspective[J]. Powder Technology, 2018, 336: 12-29. |
28 | Schneider T, Bridgwater J. The stability of wet spouted beds[J]. Drying Technology, 1993, 11(2): 277-301. |
29 | Bacelos M S, Passos M L, Freire J T. Effect of interparticle forces on the conical spouted bed behavior of wet particles with size distribution[J]. Powder Technology, 2007, 174(3): 114-126. |
30 | Feng C L, Yu A B. Quantification of the relationship between porosity and interparticle forces for the packing of wet uniform spheres[J]. Journal of Colloid and Interface Science, 2000, 231(1): 136-142. |
31 | Wen C Y, Yu Y H. Mechanics of fluidization[J]. The Chemical Engineering Progress Symposium Series, 1966, 62(62): 100-105. |
32 | Dai L, Yuan Z, Guan L, et al. Fluidization dynamics of wet Geldart D particles by pressure fluctuation analysis[J]. Powder Technology, 2021, 388: 450-461. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[4] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[7] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[10] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||