CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3879-3887.DOI: 10.11949/0438-1157.20230666
• Biochemical engineering and technology • Previous Articles Next Articles
Yaxin ZHAO1(), Xueqin ZHANG2, Rongzhu WANG2, Guo SUN2, Shanjing YAO1, Dongqiang LIN1(
)
Received:
2023-07-03
Revised:
2023-09-01
Online:
2023-11-20
Published:
2023-09-25
Contact:
Dongqiang LIN
赵亚欣1(), 张雪芹2, 王荣柱2, 孙国2, 姚善泾1, 林东强1(
)
通讯作者:
林东强
作者简介:
赵亚欣(1997—),女,硕士研究生,Katharine0213@163.com
基金资助:
CLC Number:
Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode[J]. CIESC Journal, 2023, 74(9): 3879-3887.
赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887.
Resin | Residence time/min | Load/(g/L) | Yield/% | Productivity/(g/(L·h)) | Buffer consumption/(L/g) |
---|---|---|---|---|---|
Eshmuno CP-FT | 1 | 240 | 62.8 | 78.1 | 0.54 |
3 | 580 | 82.4 | 92.4 | 0.24 | |
5 | 710 | 85.8 | 70.1 | 0.21 | |
Eshmuno CPX | 1 | 173 | 39.7 | 37.1 | 1.07 |
3 | 269 | 61.3 | 46.6 | 0.50 | |
5 | 345 | 71.9 | 44.0 | 0.36 |
Table 1 Evaluation of separation performance with two resins
Resin | Residence time/min | Load/(g/L) | Yield/% | Productivity/(g/(L·h)) | Buffer consumption/(L/g) |
---|---|---|---|---|---|
Eshmuno CP-FT | 1 | 240 | 62.8 | 78.1 | 0.54 |
3 | 580 | 82.4 | 92.4 | 0.24 | |
5 | 710 | 85.8 | 70.1 | 0.21 | |
Eshmuno CPX | 1 | 173 | 39.7 | 37.1 | 1.07 |
3 | 269 | 61.3 | 46.6 | 0.50 | |
5 | 345 | 71.9 | 44.0 | 0.36 |
Resin | Residence time/min | Yield/% | Productivity/(g/(L·h)) | Buffer consumption/(L/g) |
---|---|---|---|---|
Eshmuno CP-FT | 3 | 83.2 | 90.9 | 0.25 |
Eshmuno CPX | 3 | 60.4 | 43.8 | 0.54 |
Table 2 Verification of batch experiment on two resins
Resin | Residence time/min | Yield/% | Productivity/(g/(L·h)) | Buffer consumption/(L/g) |
---|---|---|---|---|
Eshmuno CP-FT | 3 | 83.2 | 90.9 | 0.25 |
Eshmuno CPX | 3 | 60.4 | 43.8 | 0.54 |
1 | Swain S M, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nature Reviews Drug Discovery, 2023, 22(2): 101-126. |
2 | Briani C, Visentin A. Therapeutic monoclonal antibody therapies in chronic autoimmune demyelinating neuropathies[J]. Neurotherapeutics: the Journal of the American Society for Experimental Neuro Therapeutics, 2022, 19(3): 874-884. |
3 | Saoudi Gonzalez N, López D, Gómez D, et al. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer[J]. Expert Opinion on Drug Metabolism & Toxicology, 2022, 18(11): 755-767. |
4 | Khanal O, Lenhoff A M. Developments and opportunities in continuous biopharmaceutical manufacturing[J]. mAbs, 2021, 13(1): 1903664. |
5 | 史策, 虞骥, 高栋, 等. 单抗制备的过程模拟和经济性分析[J]. 化工学报, 2018, 69(7): 3198-3207. |
Shi C, Yu J, Gao D, et al. Process simulation and economic evaluation of monoclonal antibody production[J]. CIESC Journal, 2018, 69(7): 3198-3207. | |
6 | 卢慧丽, 林东强, 姚善泾. 抗体药物分离纯化中的层析技术及进展[J]. 化工学报, 2018, 69(1): 341-351. |
Lu H L, Lin D Q, Yao S J. Chromatographic technology in antibody purification and its progress[J]. CIESC Journal, 2018, 69(1): 341-351. | |
7 | 陈泉, 卓燕玲, 许爱娜, 等. 蛋白A亲和层析法纯化单克隆抗体工艺的优化[J]. 生物工程学报, 2016, 32(6): 807-818. |
Chen Q, Toh P, Hoi A, et al. Improved protein-A chromatography for monoclonal antibody purification[J]. Chinese Journal of Biotechnology, 2016, 32(6): 807-818. | |
8 | 鲁伟, 应国清, 杨晓明, 等. 单克隆抗体工业生产中蛋白A亲和层析步骤的成本分析[J]. 高校化学工程学报, 2023, 37(2): 276-284. |
Lu W, Ying G Q, Yang X M, et al. Cost analysis of protein A affinity chromatography in industrial production of monoclonal antibody[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(2): 276-284. | |
9 | 荆淑莹, 史策, 姚善泾, 等. 连续流层析及用于抗体分离的新进展[J]. 高校化学工程学报, 2021, 35(1): 1-12. |
Jing S Y, Shi C, Yao S J, et al. Progress on continuous chromatography and its application in antibody separation[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(1): 1-12. | |
10 | Hari S B, Lau H, Razinkov V I, et al. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition[J]. Biochemistry, 2010, 49(43): 9328-9338. |
11 | Liu H F, Ma J F, Winter C, et al. Recovery and purification process development for monoclonal antibody production[J]. mAbs, 2010, 2(5): 480-499. |
12 | Arosio P, Barolo G, Müller-Späth T, et al. Aggregation stability of a monoclonal antibody during downstream processing[J]. Pharmaceutical Research, 2011, 28(8): 1884-1894. |
13 | Joshi V, Yadav N, Rathore A. Aggregation of monoclonal antibody products: formation and removal[J]. BioPharm International, 2013, 26(3): 40-45. |
14 | Rosenberg A S. Effects of protein aggregates: an immunologic perspective[J]. The AAPS Journal, 2006, 8(3): 59. |
15 | Cromwell M E M, Hilario E, Jacobson F. Protein aggregation and bioprocessing[J]. The AAPS Journal, 2006, 8(3): 66. |
16 | Moussa E M, Panchal J P, Moorthy B S, et al. Immunogenicity of therapeutic protein aggregates[J]. Journal of Pharmaceutical Sciences, 2016, 105(2): 417-430. |
17 | Vázquez-Rey M, Lang D A. Aggregates in monoclonal antibody manufacturing processes[J]. Biotechnology and Bioengineering, 2011, 108(7): 1494-1508. |
18 | Shukla A A, Hubbard B, Tressel T, et al. Downstream processing of monoclonal antibodies—application of platform approaches[J]. Journal of Chromatography B, 2007, 848(1): 28-39. |
19 | Lu Y F, Williamson B, Gillespie R. Recent advancement in application of hydrophobic interaction chromatography for aggregate removal in industrial purification process[J]. Current Pharmaceutical Biotechnology, 2009, 10(4): 427-433. |
20 | McCue J T. Chapter 25 theory and use of hydrophobic interaction chromatography in protein purification applications[M]//Burgess R R, Deutscher M P. Methods in Enzymology. 2nd ed. Amsterdam: Elsevier, 2009: 405-414. |
21 | McCue J T, Engel P, Ng A, et al. Modeling of protein monomer/aggregate purification and separation using hydrophobic interaction chromatography[J]. Bioprocess and Biosystems Engineering, 2008, 31(3): 261-275. |
22 | Ichihara T, Ito T, Kurisu Y, et al. Integrated flow-through purification for therapeutic monoclonal antibodies processing[J]. mAbs, 2018, 10(2): 325-334. |
23 | Liu H F, McCooey B, Duarte T, et al. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification[J]. Journal of Chromatography A, 2011, 1218(39): 6943-6952. |
24 | Reck J M, Pabst T M, Hunter A K, et al. Separation of antibody monomer-dimer mixtures by frontal analysis[J]. Journal of Chromatography A, 2017, 1500: 96-104. |
25 | Wollacott R, Roth L, Sears T, et al. The development of a flow-through mode cation exchange process for the purification of a monoclonal antibody[J]. BioProcessing Journal, 2015, 14(2): 5-13. |
26 | Stone M T, Cotoni K A, Stoner J L. Cation exchange frontal chromatography for the removal of monoclonal antibody aggregates[J]. Journal of Chromatography A, 2019, 1599: 152-160. |
27 | Vogg S, Pfeifer F, Ulmer N, et al. Process intensification by frontal chromatography: performance comparison of resin and membrane adsorber for monovalent antibody aggregate removal[J]. Biotechnology and Bioengineering, 2020, 117(3): 662-672. |
28 | Wolf M K F, Closet A, Bzowska M, et al. Improved performance in mammalian cell perfusion cultures by growth inhibition[J]. Biotechnology Journal, 2019, 14(2): 1700722. |
29 | Reck J M, Pabst T M, Hunter A K, et al. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin[J]. Journal of Chromatography A, 2015, 1402: 46-59. |
30 | Carta G, Jungbauer A. Downstream processing of biotechnology products[M]//Protein Chromatography. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 1-55. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[4] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[5] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[6] | Ruohan DU, Bo PANG, Ning WANG, Fujun CUI, Minggang GUO, Gaohong HE, Xuemei WU. Continuous covalent organic framework composite membrane with size-sieving effect for vanadium flow battery [J]. CIESC Journal, 2022, 73(9): 4163-4172. |
[7] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[8] | Shanshan YANG, Yuyang YAO, Yundi DONG, Zhipeng XU, Shangshang GAO, Huimin RUAN, Jiangnan SHEN. Preparation and performance of ion exchange membrane with K+ selectivity based on dibenzo-18-crown-6 modification [J]. CIESC Journal, 2022, 73(4): 1781-1793. |
[9] | FU Fengyan, XING Guang'en. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. |
[10] | LI Tengfei, MIAO Yun, YANG Liu, WANG Longyao, ZHU Huacheng. Microwave enhanced ion exchange technology of Y molecular sieve [J]. CIESC Journal, 2021, 72(S1): 406-412. |
[11] | Zi'ang XU, Lei WAN, Kai LIU, Baoguo WANG. Recent progress of molecular design for highly stable alkaline anion exchange membranes [J]. CIESC Journal, 2021, 72(8): 3891-3906. |
[12] | LIU Xuan, MA Yichang, ZHANG Qiugen, LIU Qinglin. Preparation of fullerene crosslinked quaternized polyphenylene oxide anion exchange membrane [J]. CIESC Journal, 2021, 72(7): 3849-3855. |
[13] | NI Jia, SUN Xueyan, SHUI Ziyi, HE Feihong, HUI Xiaomin, ZHU Liangliang, CHEN Xi. Energy consumption and performance optimization of moisture swing sorbents for direct air capture of CO2 [J]. CIESC Journal, 2021, 72(3): 1409-1418. |
[14] | Chunhui FAN,Zongye GAO,Shanjing YAO,Dongqiang LIN. Quantitative characterization of non-specific adsorption on affinity chromatography resins [J]. CIESC Journal, 2021, 72(10): 5218-5225. |
[15] | Shuping ZOU, Zhentao JIANG, Zhicai WANG, Zhiqiang LIU, Yuguo ZHENG. Synthesis of (R)-epichlorohydrin catalyzed by cross-linked cell aggregates of epoxide hydrolase [J]. CIESC Journal, 2020, 71(9): 4238-4245. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 689
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 494
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||