CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2689-2698.DOI: 10.11949/0438-1157.20230298
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shiting XIE1(), Zhuang LIU1,2(
), Rui XIE1,2, Xiaojie JU1,2, Wei WANG1,2, Dawei PAN1,2, Liangyin CHU1,2
Received:
2023-03-27
Revised:
2023-05-10
Online:
2023-07-27
Published:
2023-06-05
Contact:
Zhuang LIU
谢诗婷1(), 刘壮1,2(
), 谢锐1,2, 巨晓洁1,2, 汪伟1,2, 潘大伟1,2, 褚良银1,2
通讯作者:
刘壮
作者简介:
谢诗婷(1998—),女,硕士研究生,3142174373@qq.com
基金资助:
CLC Number:
Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+[J]. CIESC Journal, 2023, 74(6): 2689-2698.
谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698.
编号 | C0/(mg·L-1) | Ci /(mg·L-1) | Q/(mg·g-1) | η/% |
---|---|---|---|---|
1 | 0.0056 | 0.0005 | 0.0051 | 91.071 |
2 | 0.2006 | 0.0386 | 0.162 | 80.757 |
3 | 2.006 | 0.292 | 1.714 | 85.443 |
4 | 20.059 | 3.01 | 17.049 | 84.994 |
5 | 200.59 | 159 | 41.59 | 20.734 |
Table 1 Hg2+ adsorption rate of PNA microgels
编号 | C0/(mg·L-1) | Ci /(mg·L-1) | Q/(mg·g-1) | η/% |
---|---|---|---|---|
1 | 0.0056 | 0.0005 | 0.0051 | 91.071 |
2 | 0.2006 | 0.0386 | 0.162 | 80.757 |
3 | 2.006 | 0.292 | 1.714 | 85.443 |
4 | 20.059 | 3.01 | 17.049 | 84.994 |
5 | 200.59 | 159 | 41.59 | 20.734 |
离子 | C0/(mg·L-1) | Ci /(mg·L-1) | Q/(mg·g-1) | η/% |
---|---|---|---|---|
Zn2+ | 6.539 | 5.76 | 0.779 | 11.913 |
Cd2+ | 11.24 | 10.03 | 1.21 | 10.765 |
Pb2+ | 20.72 | 19.05 | 1.67 | 8.060 |
Hg2+ | 20.059 | 2.88 | 17.179 | 85.642 |
Table 2 Different metal ions adsorption rate of PNA microgels
离子 | C0/(mg·L-1) | Ci /(mg·L-1) | Q/(mg·g-1) | η/% |
---|---|---|---|---|
Zn2+ | 6.539 | 5.76 | 0.779 | 11.913 |
Cd2+ | 11.24 | 10.03 | 1.21 | 10.765 |
Pb2+ | 20.72 | 19.05 | 1.67 | 8.060 |
Hg2+ | 20.059 | 2.88 | 17.179 | 85.642 |
1 | Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019, 2019: 1-14. |
2 | Mao L L, Ren W B, Liu X T, et al. Mercury contamination in the water and sediments of a typical inland river-lake basin in China: occurrence, sources, migration and risk assessment[J]. Journal of Hazardous Materials, 2023, 446: 130724. |
3 | Singh A D, Khanna K, Kour J, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies[J]. Chemosphere, 2023, 319: 137917. |
4 | Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487. |
5 | Ghori N H, Ghori T, Hayat M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828. |
6 | 李志强, 韩俊艳, 郭宇俊, 等. 汞毒性研究进展[J]. 畜牧与饲料科学, 2018, 39(12): 64-68. |
Li Z Q, Han J Y, Guo Y J, et al. Research progress on mercury toxicity[J]. Animal Husbandry and Feed Science, 2018, 39(12): 64-68. | |
7 | 张红兵, 张宏群, 窦建瑞, 等. 汞毒性研究概况及职业性汞中毒诊断标准修订探讨[J]. 职业卫生与应急救援, 2022, 40(4): 501-505. |
Zhang H B, Zhang H Q, Dou J R, et al. Overview of study on mercury toxicity and thinking on revision of diagnostic criteria for occupational mercury poisoning[J]. Occupational Health and Emergency Rescue, 2022, 40(4): 501-505. | |
8 | Carolin C F, Kumar P S, Saravanan A, et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2782-2799. |
9 | Wei Q S, Nagi R, Sadeghi K, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone[J]. ACS Nano, 2014, 8(2): 1121-1129. |
10 | Lepak R F, Yin R S, Krabbenhoft D P, et al. Use of stable isotope signatures to determine mercury sources in the great lakes[J]. Environmental Science & Technology Letters, 2015, 2(12): 335-341. |
11 | 孙花丽, 李利利, 张亮亮, 等. ICP-MS测定黄原胶中汞元素含量的研究[J]. 精细化工中间体, 2023, 53(1): 92-96. |
Sun H L, Li L L, Zhang L L, et al. Determination of Hg in xanthan gum by ICP-MS[J]. Fine Chemical Intermediates, 2023, 53(1): 92-96. | |
12 | Chen S Y, Li Z, Li K, et al. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions[J]. Coordination Chemistry Reviews, 2021, 429: 213691. |
13 | Abbas K, Znad H, Awual M R. A ligand anchored conjugate adsorbent for effective mercury(Ⅱ) detection and removal from aqueous media[J]. Chemical Engineering Journal, 2018, 334: 432-443. |
14 | 孙溢敏. 基于光子晶体的金属离子传感薄膜的制备及其应用研究[D]. 延安: 延安大学, 2020. |
Sun Y M. Fabrication and application of photonic crystal-based metal ions sensing films[D]. Yan'an: Yan'an University, 2020. | |
15 | Mohan A, Prakash J. Fabrication of eco-friendly hydrogel strips for the simultaneous quantification of heavy metal ions in aqueous environment[J]. Dyes and Pigments, 2022, 199: 110045. |
16 | Hu B, Wei T B, Cui Y J, et al. Hg(Ⅱ) immobilization and detection using gel formation with tetra-(4-pyridylphenyl)ethylene and an aggregation-induced luminescence effect[J]. Scientific Reports, 2023, 13: 2135. |
17 | 马莉萍, 马生龙, 李云霞, 等. 基于适配体的荧光生物传感器对Hg2+的检测技术研究[J]. 甘肃科学学报, 2023, 35(1): 10-14, 22. |
Ma L P, Ma S L, Li Y X, et al. Research on the detection technique of Hg2+ based on aptamer fluorescence biosensor[J]. Journal of Gansu Sciences, 2023, 35(1): 10-14, 22. | |
18 | Ding S Y, Dong M, Wang Y W, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. Journal of the American Chemical Society, 2016, 138(9): 3031-3037. |
19 | Wu S J, Yang Y J, Cheng Y, et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films[J]. Aggregate, 2022: e287. |
20 | Tian X Y, Sun M W, Wen G Y, et al. Ultrasensitive hydrogel grating detector for real-time continuous-flow detection of trace threat Pb2+ [J]. Journal of Hazardous Materials, 2023, 443: 130289. |
21 | Yan P J, He F, Wang W, et al. Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36425-36434. |
22 | 田小玉, 汪伟, 谢锐, 等. 微纳结构化智能凝胶材料用于重金属离子快速检测的研究进展[J]. 化工新型材料, 2022, 50(2): 81-85. |
Tian X Y, Wang W, Xie R, et al. Progresses on rapid detection of heavy metal ions by using micro/nano-structured smart hydrogels[J]. New Chemical Materials, 2022, 50(2): 81-85. | |
23 | Kou D H, Ma W, Zhang S F. Functionalized mesoporous photonic crystal film for ultrasensitive visual detection and effective removal of mercury (Ⅱ) ions in water[J]. Advanced Functional Materials, 2021, 31(9): 2007032. |
24 | Zhang R D, Gao R, Gou Q Q, et al. Precipitation polymerization: a powerful tool for preparation of uniform polymer particles[J]. Polymers, 2022, 14(9): 1851. |
25 | 孙嘉靖, 刘璐, 陈志勇. 沉淀聚合法的成球机理研究进展[J]. 齐鲁工业大学学报(自然科学版), 2017, 31(2): 1-6. |
Sun J J, Liu L, Chen Z Y. Research progress in mechanism of particle formation in precipitation polymerization[J]. Journal of Qilu University of Technology (Natural Science Edition), 2017, 31(2): 1-6. | |
26 | 和芹, 舒世立, 郭强强, 等. 硫脲与Hg(Ⅱ)配位作用的密度泛函理论研究[J]. 南开大学学报(自然科学版), 2017, 50(3): 75-78, 90. |
He Q, Shu S L, Guo Q Q, et al. Density functional theory study for the coordination between thiourea and mercury cation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2017, 50(3): 75-78, 90. | |
27 | Louis H, Charlie D E, Amodu I O, et al. Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X)[J]. ACS Omega, 2022, 7(39): 35118-35135. |
28 | 谢黎霞, 闫文波, 李瑞歌, 等. 氨基硫脲-罗丹明6G荧光探针的合成及对Hg2+的选择性识别[J]. 安全与环境学报, 2022, 22(5): 2865-2871. |
Xie L X, Yan W B, Li R G, et al. Synthesis of a thiourea-based amine rhodamine derivative chemo probe and its Hg2+-selective recognition properties[J]. Journal of Safety and Environment, 2022, 22(5): 2865-2871. | |
29 | 吴跃, 吴开彦, 刘同河, 等. 硅胶负载氨基硫脲的合成及对Ag+和Hg2+的吸附性能研究[J]. 离子交换与吸附, 2022, 38(6): 490-500. |
Wu Y, Wu K Y, Liu T H, et al. Synthesis of silica supported thiosemicarbazide and its adsorption property for Ag+ and Hg2+ [J]. Ion Exchange and Adsorption, 2022, 38(6): 490-500. | |
30 | Pu X Y, Dang Q F, Liu C S, et al. Selective capture of mercury(Ⅱ) in aqueous media using nanoporous diatomite modified by allyl thiourea[J]. Journal of Materials Science, 2022, 57(20): 9246-9264. |
31 | 李沂航, 牛卫卫, 张肆硕, 等. 含硫、氮和氧原子配位基团的螯合树脂的合成及其对Hg2+的吸附[J]. 离子交换与吸附, 2022, 38(6): 538-547. |
Li Y H, Niu W W, Zhang S S, et al. Synthesis of chetating resins with sulfur, nitrogen and oxygen atoms and their adsorption for Hg2+ [J]. Ion Exchange and Adsorption, 2022, 38(6): 538-547. | |
32 | 鲁蓉. 双硫脲基螯合纤维对Hg2+的吸附性能研究[J]. 中国无机分析化学, 2020, 10(1): 38-44. |
Lu R. Research of the adsorption properties of dithiobiurea-based chelating fiber for Hg2+ [J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 38-44. |
[1] | Yaqi HOU, Jingyao SHEN, Da YI, Zhe WANG, Lingling KANG, Zihui MENG, Min XUE. Influences on diameter of isopropylacrylamide hydrogel nanoparticles and its effect on peptide affinity [J]. CIESC Journal, 2020, 71(S2): 267-272. |
[2] | ZHANG Jian’an,LIU Jie,WU Mingyuan,WU Qingyun,YANG Jianjun,. Developments in research and application of poly N-isopropyl acrylamide microgels [J]. , 2009, 28(3): 424-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 270
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||