CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2699-2707.DOI: 10.11949/0438-1157.20230261
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Qin YANG(), Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU
Received:
2023-03-20
Revised:
2023-05-24
Online:
2023-07-27
Published:
2023-06-05
Contact:
Qin YANG
通讯作者:
杨琴
作者简介:
杨琴(1974—),女,博士,副教授,1004240879@qq.com
基金资助:
CLC Number:
Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707.
杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 TEM image of MXene (a); Element mapping images of MXene [(b), (c)];Photo of MXene/PVA/PAA hydrogel (d); SEM image of MXene/PVA/PAA hydrogel (e); Element mapping images of MXene/PVA/PAA hydrogel (f)
Fig.6 Shape memory and recovery images under different stimuli: (a) temperature, (b) Fe3+; the effect of MXene content on Rf of PVA/PAA/MXene hydrogel under different stimuli: (c) temperature, (d) Fe3+
Fig.7 Conductivity of MXene/PVA/PAA hydrogel sensor: (a) the effect of MXene content on the conductivity of MXene/PVA/PAA hydrogel; (b) the relative resistance change rate-time curve of relative resistance of composite hydrogel with 0.10%(mass) MXene content under tensile strain cycle with frequency of 1 time per second; (c) the relative resistance change rate-time curve of relative resistance under 2 cycles of 1 s to 1 cycle of 2.5 s; (d) gauge factor curves under different strains
1 | Liu H, Du C, Liao L, et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh super elasticity and temperature sensitivity[J]. Nature Communications, 2022, 13(1): 1-11. |
2 | Ohm Y, Pan C, Ford M J, et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics[J]. Nature Electronics, 2021, 4(3): 185-192. |
3 | Wei H, Lei M, Zhang P, et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels[J]. Nature Communications, 2021, 12(1): 1-10. |
4 | Dobashi Y, Yao D, Petel Y, et al. Piezoionic mechanoreceptors: force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507. |
5 | Zhang Y, Gong M, Wan P.MXene hydrogel for wearable electronics[J]. Matter, 2021, 4(8): 2655-2658. |
6 | Li L, Zhang Y, Lu H, et al. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage[J]. Nature Communications, 2020, 11(1): 1-12. |
7 | Lin H, Tan J, Zhu J, et al. A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis[J]. Nature Communications, 2020, 11(1): 1-12. |
8 | Yang C, Suo Z.Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
9 | Hu Z, Lu J, Hu A, et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy[J]. Chemical Engineering Journal, 2022, 446: 137269. |
10 | Kim S H, Hong H, Ajiteru O, et al. D bioprinted silk fibroin hydrogels for tissue engineering[J]. Nature Protocols, 2021, 16(12): 5484-5532. |
11 | Chang S, Wang S, Liu Z, et al. Advances of stimulus-responsive hydrogels for bone defects repair in tissue engineering[J]. Gels, 2022, 8(6): 389. |
12 | Chen J, Zhu Y, Chang X, et al. Recent progress in essential functions of soft electronic skin[J]. Advanced Functional Materials, 2021, 31(42): 2104686. |
13 | Ying B, Liu X.Skin-like hydrogel devices for wearable sensing,soft robotics and beyond[J]. Iscience, 2021, 24(11): 103174. |
14 | Lee Y, Song W J, Sun J Y.Hydrogel soft robotics[J]. Materials Today Physics, 2020, 15: 100258. |
15 | Wang S, Sun Z, Zhao Y, et al. A highly stretchable hydrogel sensor for soft robot multi-modal perception[J]. Sensors and Actuators A: Physical, 2021, 331: 113006. |
16 | Sun X, Agate S, Salem K S, et al. Hydrogel-based sensor networks: compositions,properties,and applications—a review[J]. ACS Applied Bio Materials, 2020, 4(1): 140-162. |
17 | Rong Q, Lei W, Liu M.Conductive hydrogels as smart materials for flexible electronic devices[J]. Chemistry-A European Journal, 2018, 24(64): 16930-16943. |
18 | Li G, Zhang H, Fortin D, et al. Poly(vinyl alcohol)–poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities[J]. Langmuir, 2015, 31(42): 11709-11716. |
19 | Liang R, Yu H, Wang L, et al. Highly tough hydrogels with the body temperature-responsive shape memory effect[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43563-43572. |
20 | Costa D C S, Costa P D C, Gomes M C, et al. Universal strategy for designing shape memory hydrogels[J]. ACS Materials Letters, 2022, 4(4): 701-706. |
21 | Hua L, Zhao C, Guan X, et al. Cold-induced shape memory hydrogels for strong and programmable artificial muscles[J]. Science China Materials, 2022, 65(8): 2274-2280. |
22 | Wu S, Shao Z, Xie H, et al. Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics[J]. Journal of Materials Chemistry A, 2021, 9(2): 1048-1061. |
23 | Li J, Chee H L, Chong Y T, et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23826-23838. |
24 | Qiao L, Liu C, Liu C, et al. Self-healing, pH-sensitive and shape memory hydrogels based on acylhydrazone and hydrogen bonds[J]. European Polymer Journal, 2022, 162: 110838. |
25 | Davidson-Rozenfeld G, Stricker L, Simke J, et al. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials,self-healing matrices and controlled drug release systems[J]. Polymer Chemistry, 2019, 10(30): 4106-4115. |
26 | Yang T, Wang M, Jia F, et al. Thermo-responsive shape memory sensors based on tough,remolding and anti-freezing hydrogels[J]. Journal of Materials Chemistry C, 2020, 8(7): 2326-2335. |
27 | Zhang X, Cai J, Liu W, et al. Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior[J]. Polymer, 2020, 188: 122147. |
28 | Sivasankarapillai V S, Sharma T S K, Wabaidur K Y H S M, et al. MXene based sensing materials: current status and future perspectives[J]. ES Energy & Environment, 2022, 15: 4-14. |
29 | Zhou C, Zhao X, Xiong Y, et al. A review of etching methods of MXene and applications of MXene conductive hydrogels[J]. European Polymer Journal, 2022, 167: 111063. |
30 | Zou J, Wu J, Wang Y, et al. Additive-mediated intercalation and surface modification of MXenes[J]. Chemical Society Reviews, 2022, 51(8): 2972-2990. |
31 | Ge G, Zhang Y Z, Zhang W, et al. Ti3C2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach[J]. ACS Nano, 2021, 15(2): 2698-2706. |
32 | 居涛, 李国辉, 耿凤霞.一步法合成二维 及其电化学性能研究[J]. 化工学报, 2022, 73(2): 951-959. |
Ju T, Li G H, Geng F X. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance[J]. CIESC Journal, 2022, 73(2): 951-959. | |
33 | 杨琴, 赵卫杰, 赵娜, 等.微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696. |
Yang Q, Zhao W J, Zhao N, et al. Preparation and properties of a novel AG/PVA/CB[7] hydrogel reinforced by microcrystalline and hydrogen bonds[J]. Chinese Journal of Materials Research, 2020, 34(9): 691-696. | |
34 | Feng Y, Liu H, Zhu W, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials, 2021, 31(46): 2105264. |
35 | Yu Y, Feng Y, Liu F, et al. Carbon dots‐based ultra stretchable and conductive hydrogels for high-performance tactile sensors and self-powered electronic skin[J]. Small, 2022: 2204365. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[7] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[8] | Shiting XIE, Zhuang LIU, Rui XIE, Xiaojie JU, Wei WANG, Dawei PAN, Liangyin CHU. Study on preparation of poly(N-isopropylacrylamide-co-allylthiourea) smart microgels and responsive performance of Hg2+ [J]. CIESC Journal, 2023, 74(6): 2689-2698. |
[9] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[12] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[13] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[14] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[15] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||