1 |
Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019, 2019: 1-14.
|
2 |
Mao L L, Ren W B, Liu X T, et al. Mercury contamination in the water and sediments of a typical inland river-lake basin in China: occurrence, sources, migration and risk assessment[J]. Journal of Hazardous Materials, 2023, 446: 130724.
|
3 |
Singh A D, Khanna K, Kour J, et al. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies[J]. Chemosphere, 2023, 319: 137917.
|
4 |
Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487.
|
5 |
Ghori N H, Ghori T, Hayat M Q, et al. Heavy metal stress and responses in plants[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1807-1828.
|
6 |
李志强, 韩俊艳, 郭宇俊, 等. 汞毒性研究进展[J]. 畜牧与饲料科学, 2018, 39(12): 64-68.
|
|
Li Z Q, Han J Y, Guo Y J, et al. Research progress on mercury toxicity[J]. Animal Husbandry and Feed Science, 2018, 39(12): 64-68.
|
7 |
张红兵, 张宏群, 窦建瑞, 等. 汞毒性研究概况及职业性汞中毒诊断标准修订探讨[J]. 职业卫生与应急救援, 2022, 40(4): 501-505.
|
|
Zhang H B, Zhang H Q, Dou J R, et al. Overview of study on mercury toxicity and thinking on revision of diagnostic criteria for occupational mercury poisoning[J]. Occupational Health and Emergency Rescue, 2022, 40(4): 501-505.
|
8 |
Carolin C F, Kumar P S, Saravanan A, et al. Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2782-2799.
|
9 |
Wei Q S, Nagi R, Sadeghi K, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone[J]. ACS Nano, 2014, 8(2): 1121-1129.
|
10 |
Lepak R F, Yin R S, Krabbenhoft D P, et al. Use of stable isotope signatures to determine mercury sources in the great lakes[J]. Environmental Science & Technology Letters, 2015, 2(12): 335-341.
|
11 |
孙花丽, 李利利, 张亮亮, 等. ICP-MS测定黄原胶中汞元素含量的研究[J]. 精细化工中间体, 2023, 53(1): 92-96.
|
|
Sun H L, Li L L, Zhang L L, et al. Determination of Hg in xanthan gum by ICP-MS[J]. Fine Chemical Intermediates, 2023, 53(1): 92-96.
|
12 |
Chen S Y, Li Z, Li K, et al. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions[J]. Coordination Chemistry Reviews, 2021, 429: 213691.
|
13 |
Abbas K, Znad H, Awual M R. A ligand anchored conjugate adsorbent for effective mercury(Ⅱ) detection and removal from aqueous media[J]. Chemical Engineering Journal, 2018, 334: 432-443.
|
14 |
孙溢敏. 基于光子晶体的金属离子传感薄膜的制备及其应用研究[D]. 延安: 延安大学, 2020.
|
|
Sun Y M. Fabrication and application of photonic crystal-based metal ions sensing films[D]. Yan'an: Yan'an University, 2020.
|
15 |
Mohan A, Prakash J. Fabrication of eco-friendly hydrogel strips for the simultaneous quantification of heavy metal ions in aqueous environment[J]. Dyes and Pigments, 2022, 199: 110045.
|
16 |
Hu B, Wei T B, Cui Y J, et al. Hg(Ⅱ) immobilization and detection using gel formation with tetra-(4-pyridylphenyl)ethylene and an aggregation-induced luminescence effect[J]. Scientific Reports, 2023, 13: 2135.
|
17 |
马莉萍, 马生龙, 李云霞, 等. 基于适配体的荧光生物传感器对Hg2+的检测技术研究[J]. 甘肃科学学报, 2023, 35(1): 10-14, 22.
|
|
Ma L P, Ma S L, Li Y X, et al. Research on the detection technique of Hg2+ based on aptamer fluorescence biosensor[J]. Journal of Gansu Sciences, 2023, 35(1): 10-14, 22.
|
18 |
Ding S Y, Dong M, Wang Y W, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. Journal of the American Chemical Society, 2016, 138(9): 3031-3037.
|
19 |
Wu S J, Yang Y J, Cheng Y, et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films[J]. Aggregate, 2022: e287.
|
20 |
Tian X Y, Sun M W, Wen G Y, et al. Ultrasensitive hydrogel grating detector for real-time continuous-flow detection of trace threat Pb2+ [J]. Journal of Hazardous Materials, 2023, 443: 130289.
|
21 |
Yan P J, He F, Wang W, et al. Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36425-36434.
|
22 |
田小玉, 汪伟, 谢锐, 等. 微纳结构化智能凝胶材料用于重金属离子快速检测的研究进展[J]. 化工新型材料, 2022, 50(2): 81-85.
|
|
Tian X Y, Wang W, Xie R, et al. Progresses on rapid detection of heavy metal ions by using micro/nano-structured smart hydrogels[J]. New Chemical Materials, 2022, 50(2): 81-85.
|
23 |
Kou D H, Ma W, Zhang S F. Functionalized mesoporous photonic crystal film for ultrasensitive visual detection and effective removal of mercury (Ⅱ) ions in water[J]. Advanced Functional Materials, 2021, 31(9): 2007032.
|
24 |
Zhang R D, Gao R, Gou Q Q, et al. Precipitation polymerization: a powerful tool for preparation of uniform polymer particles[J]. Polymers, 2022, 14(9): 1851.
|
25 |
孙嘉靖, 刘璐, 陈志勇. 沉淀聚合法的成球机理研究进展[J]. 齐鲁工业大学学报(自然科学版), 2017, 31(2): 1-6.
|
|
Sun J J, Liu L, Chen Z Y. Research progress in mechanism of particle formation in precipitation polymerization[J]. Journal of Qilu University of Technology (Natural Science Edition), 2017, 31(2): 1-6.
|
26 |
和芹, 舒世立, 郭强强, 等. 硫脲与Hg(Ⅱ)配位作用的密度泛函理论研究[J]. 南开大学学报(自然科学版), 2017, 50(3): 75-78, 90.
|
|
He Q, Shu S L, Guo Q Q, et al. Density functional theory study for the coordination between thiourea and mercury cation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2017, 50(3): 75-78, 90.
|
27 |
Louis H, Charlie D E, Amodu I O, et al. Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X)[J]. ACS Omega, 2022, 7(39): 35118-35135.
|
28 |
谢黎霞, 闫文波, 李瑞歌, 等. 氨基硫脲-罗丹明6G荧光探针的合成及对Hg2+的选择性识别[J]. 安全与环境学报, 2022, 22(5): 2865-2871.
|
|
Xie L X, Yan W B, Li R G, et al. Synthesis of a thiourea-based amine rhodamine derivative chemo probe and its Hg2+-selective recognition properties[J]. Journal of Safety and Environment, 2022, 22(5): 2865-2871.
|
29 |
吴跃, 吴开彦, 刘同河, 等. 硅胶负载氨基硫脲的合成及对Ag+和Hg2+的吸附性能研究[J]. 离子交换与吸附, 2022, 38(6): 490-500.
|
|
Wu Y, Wu K Y, Liu T H, et al. Synthesis of silica supported thiosemicarbazide and its adsorption property for Ag+ and Hg2+ [J]. Ion Exchange and Adsorption, 2022, 38(6): 490-500.
|
30 |
Pu X Y, Dang Q F, Liu C S, et al. Selective capture of mercury(Ⅱ) in aqueous media using nanoporous diatomite modified by allyl thiourea[J]. Journal of Materials Science, 2022, 57(20): 9246-9264.
|
31 |
李沂航, 牛卫卫, 张肆硕, 等. 含硫、氮和氧原子配位基团的螯合树脂的合成及其对Hg2+的吸附[J]. 离子交换与吸附, 2022, 38(6): 538-547.
|
|
Li Y H, Niu W W, Zhang S S, et al. Synthesis of chetating resins with sulfur, nitrogen and oxygen atoms and their adsorption for Hg2+ [J]. Ion Exchange and Adsorption, 2022, 38(6): 538-547.
|
32 |
鲁蓉. 双硫脲基螯合纤维对Hg2+的吸附性能研究[J]. 中国无机分析化学, 2020, 10(1): 38-44.
|
|
Lu R. Research of the adsorption properties of dithiobiurea-based chelating fiber for Hg2+ [J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 38-44.
|