CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2503-2521.DOI: 10.11949/0438-1157.20230332
• Process system engineering • Previous Articles Next Articles
Xuejin GAO1,2,3,4(), Yuzhuo YAO1,2,3,4, Huayun HAN1,2,3,4(), Yongsheng QI5
Received:
2023-04-03
Revised:
2023-05-06
Online:
2023-07-27
Published:
2023-06-05
Contact:
Huayun HAN
高学金1,2,3,4(), 姚玉卓1,2,3,4, 韩华云1,2,3,4(), 齐咏生5
通讯作者:
韩华云
作者简介:
高学金(1973—),男,博士,教授,gaoxuejin@bjut.edu.cn
基金资助:
CLC Number:
Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder[J]. CIESC Journal, 2023, 74(6): 2503-2521.
高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521.
Add to citation manager EndNote|Ris|BibTeX
变量编号 | 变量 | 单位 |
---|---|---|
x1 | 通风速率 | L/h |
x2 | 搅拌功率 | W |
x3 | 底物流加速率 | L/h |
x4 | 补料温度 | K |
x5 | 溶解氧浓度 | %(质量) |
x6 | 排气二氧化碳浓度 | mmol/L |
x7 | pH | — |
x8 | 反应器温度 | K |
x9 | 反应热 | kcal/h |
x10 | 冷水流加速率 | L/h |
Table 1 The main variables of penicillin fermentation process
变量编号 | 变量 | 单位 |
---|---|---|
x1 | 通风速率 | L/h |
x2 | 搅拌功率 | W |
x3 | 底物流加速率 | L/h |
x4 | 补料温度 | K |
x5 | 溶解氧浓度 | %(质量) |
x6 | 排气二氧化碳浓度 | mmol/L |
x7 | pH | — |
x8 | 反应器温度 | K |
x9 | 反应热 | kcal/h |
x10 | 冷水流加速率 | L/h |
故障批次 | 故障变量 | 故障类型 | 幅值/% | 持续时间/h |
---|---|---|---|---|
1 | 底物流加速率 | 斜坡 | 5 | 200~400 |
2 | 底物流加速率 | 阶跃 | 5 | 200~400 |
3 | 搅拌功率 | 斜坡 | 1 | 200~400 |
4 | 搅拌功率 | 阶跃 | 1 | 200~400 |
5 | 通风速率 | 阶跃 | 5 | 200~400 |
Table 2 Fault batch setting information
故障批次 | 故障变量 | 故障类型 | 幅值/% | 持续时间/h |
---|---|---|---|---|
1 | 底物流加速率 | 斜坡 | 5 | 200~400 |
2 | 底物流加速率 | 阶跃 | 5 | 200~400 |
3 | 搅拌功率 | 斜坡 | 1 | 200~400 |
4 | 搅拌功率 | 阶跃 | 1 | 200~400 |
5 | 通风速率 | 阶跃 | 5 | 200~400 |
网络层 | 输入维度 | 输出维度 | 卷积核 | 激活函数 |
---|---|---|---|---|
卷积层1 | 1×200×10 | 8×200×8 | (1, 3) | ReLU |
卷积层2 | 8×200×8 | 15×200×6 | (1, 3) | ReLU |
卷积层3 | 15×200×6 | 22×200×4 | (1, 3) | ReLU |
反卷积层1 | 22×200×4 | 15×200×6 | (1, 3) | ReLU |
反卷积层2 | 15×200×6 | 8×200×8 | (1, 3) | ReLU |
反卷积层3 | 8×200×8 | 1×200×10 | (1, 3) | ReLU |
Table 3 Network structure of CAE model
网络层 | 输入维度 | 输出维度 | 卷积核 | 激活函数 |
---|---|---|---|---|
卷积层1 | 1×200×10 | 8×200×8 | (1, 3) | ReLU |
卷积层2 | 8×200×8 | 15×200×6 | (1, 3) | ReLU |
卷积层3 | 15×200×6 | 22×200×4 | (1, 3) | ReLU |
反卷积层1 | 22×200×4 | 15×200×6 | (1, 3) | ReLU |
反卷积层2 | 15×200×6 | 8×200×8 | (1, 3) | ReLU |
反卷积层3 | 8×200×8 | 1×200×10 | (1, 3) | ReLU |
网络层 | 输入维度 | 输出维度 | 激活函数 |
---|---|---|---|
自编码器1 | 10 | 5 | ReLU |
自编码器2 | 5 | 2 | ReLU |
自编码器3 | 2 | 1 | ReLU |
Table 4 Network structure of SAE model
网络层 | 输入维度 | 输出维度 | 激活函数 |
---|---|---|---|
自编码器1 | 10 | 5 | ReLU |
自编码器2 | 5 | 2 | ReLU |
自编码器3 | 2 | 1 | ReLU |
网络层 | 输入 | 输入维度 | 输出维度 | 卷积核 | 激活函数 |
---|---|---|---|---|---|
卷积层1 | 模型的输入 X | 1×200×10 | 8×200×6 | (1, 5) | ReLU |
CCA模块 | 卷积层1的输出 | 8×200×6 | 8×200×6 | — | — |
卷积层2 | 卷积层1的输出 | 8×200×6 | 15×200×3 | (1, 4) | ReLU |
卷积层3 | 卷积层2的输出 | 15×200×3 | 22×200×1 | (1, 3) | ReLU |
反卷积层1 | 卷积层3的输出 | 22×200×1 | 15×200×3 | (1, 3) | ReLU |
反卷积层2 | 反卷积层1的输出 | 15×200×3 | 8×200×6 | (1, 4) | ReLU |
反卷积层3 | 反卷积层2的输出和CCA模块的输出进行特征融合 | 8×200×6 | 1×200×10 | (1, 5) | ReLU |
Table 5 Network structure of ADCAE model
网络层 | 输入 | 输入维度 | 输出维度 | 卷积核 | 激活函数 |
---|---|---|---|---|---|
卷积层1 | 模型的输入 X | 1×200×10 | 8×200×6 | (1, 5) | ReLU |
CCA模块 | 卷积层1的输出 | 8×200×6 | 8×200×6 | — | — |
卷积层2 | 卷积层1的输出 | 8×200×6 | 15×200×3 | (1, 4) | ReLU |
卷积层3 | 卷积层2的输出 | 15×200×3 | 22×200×1 | (1, 3) | ReLU |
反卷积层1 | 卷积层3的输出 | 22×200×1 | 15×200×3 | (1, 3) | ReLU |
反卷积层2 | 反卷积层1的输出 | 15×200×3 | 8×200×6 | (1, 4) | ReLU |
反卷积层3 | 反卷积层2的输出和CCA模块的输出进行特征融合 | 8×200×6 | 1×200×10 | (1, 5) | ReLU |
模块 | 网络层 | 输入 | 输入维度 | 输出维度 | 核尺寸 | Padding |
---|---|---|---|---|---|---|
SPC子模块 | 卷积层1 | 分割部分1 | 2×200×6 | 2×200×6 | (1, 3) | 1 |
卷积层2 | 分割部分2 | 2×200×6 | 2×200×6 | (1, 5) | 2 | |
卷积层3 | 分割部分3 | 2×200×6 | 2×200×6 | (1, 7) | 3 | |
卷积层4 | 分割部分4 | 2×200×6 | 2×200×6 | (1, 9) | 4 | |
CSE子模块 | 卷积层1 | 各个分割部分 | 2×200×6 | 2×200×3 | (1, 4) | 0 |
卷积层2 | 卷积层1的输出 | 2×200×3 | 2×200×2 | (1, 2) | 0 | |
最大池化层 | 卷积层2的输出 | 2×200×2 | 2×200×1 | (1, 2) | 0 | |
全局平均池化层 | 最大池化层的输出 | 2×200×1 | 2×1×1 | — | — | |
全连接层1 | 全局平均池化层的输出 | 2×1×1 | 1×1×1 | — | — | |
全连接层2 | 全连接层1的输出 | 1×1×1 | 2×1×1 | — | — |
Table 6 Network structure of CCA module
模块 | 网络层 | 输入 | 输入维度 | 输出维度 | 核尺寸 | Padding |
---|---|---|---|---|---|---|
SPC子模块 | 卷积层1 | 分割部分1 | 2×200×6 | 2×200×6 | (1, 3) | 1 |
卷积层2 | 分割部分2 | 2×200×6 | 2×200×6 | (1, 5) | 2 | |
卷积层3 | 分割部分3 | 2×200×6 | 2×200×6 | (1, 7) | 3 | |
卷积层4 | 分割部分4 | 2×200×6 | 2×200×6 | (1, 9) | 4 | |
CSE子模块 | 卷积层1 | 各个分割部分 | 2×200×6 | 2×200×3 | (1, 4) | 0 |
卷积层2 | 卷积层1的输出 | 2×200×3 | 2×200×2 | (1, 2) | 0 | |
最大池化层 | 卷积层2的输出 | 2×200×2 | 2×200×1 | (1, 2) | 0 | |
全局平均池化层 | 最大池化层的输出 | 2×200×1 | 2×1×1 | — | — | |
全连接层1 | 全局平均池化层的输出 | 2×1×1 | 1×1×1 | — | — | |
全连接层2 | 全连接层1的输出 | 1×1×1 | 2×1×1 | — | — |
故障批次 | MKPCA | CAE | SAE | ADCAE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |||
T2 | SPE | T2 | SPE | SPE | SPE | SPE | SPE | SPE | SPE | |
1 | 2.5 | 5.5 | 98.5 | 91.5 | 0.5 | 90.0 | 2.0 | 97.0 | 2.0 | 99.0 |
2 | 1.5 | 1.5 | 88.5 | 100 | 0 | 81.5 | 0 | 93.5 | 0 | 100 |
3 | 0.5 | 1.0 | 91.0 | 65.2 | 0 | 89.6 | 0 | 90.5 | 0 | 91.5 |
4 | 1.0 | 2.0 | 83.1 | 100 | 0 | 81.6 | 0 | 95.5 | 0 | 100 |
5 | 0 | 0.5 | 99.0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
Table 7 Fault alarm rate and fault detection rate of four methods
故障批次 | MKPCA | CAE | SAE | ADCAE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |||
T2 | SPE | T2 | SPE | SPE | SPE | SPE | SPE | SPE | SPE | |
1 | 2.5 | 5.5 | 98.5 | 91.5 | 0.5 | 90.0 | 2.0 | 97.0 | 2.0 | 99.0 |
2 | 1.5 | 1.5 | 88.5 | 100 | 0 | 81.5 | 0 | 93.5 | 0 | 100 |
3 | 0.5 | 1.0 | 91.0 | 65.2 | 0 | 89.6 | 0 | 90.5 | 0 | 91.5 |
4 | 1.0 | 2.0 | 83.1 | 100 | 0 | 81.6 | 0 | 95.5 | 0 | 100 |
5 | 0 | 0.5 | 99.0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
编号 | 变量 | 单位 | 编号 | 变量 | 单位 |
---|---|---|---|---|---|
x1 | pH | — | x5 | 搅拌转速 | r/min |
x2 | 溶解氧浓度 | %(质量) | x6 | 补碳 | — |
x3 | 罐压 | bar | x7 | 补氧 | — |
x4 | 温度 | ℃ | x8 | 通气量 | L/min |
Table 8 The main variables of Escherichia coli fermentation process
编号 | 变量 | 单位 | 编号 | 变量 | 单位 |
---|---|---|---|---|---|
x1 | pH | — | x5 | 搅拌转速 | r/min |
x2 | 溶解氧浓度 | %(质量) | x6 | 补碳 | — |
x3 | 罐压 | bar | x7 | 补氧 | — |
x4 | 温度 | ℃ | x8 | 通气量 | L/min |
故障批次 | CAE | DCAE | ||
---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |
1 | 0.5 | 90.0 | 3.5 | 98.0 |
2 | 0 | 81.5 | 0 | 96.5 |
4 | 0 | 81.6 | 0 | 89.5 |
Table 9 Fault alarm rate and fault detection rate of two methods
故障批次 | CAE | DCAE | ||
---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |
1 | 0.5 | 90.0 | 3.5 | 98.0 |
2 | 0 | 81.5 | 0 | 96.5 |
4 | 0 | 81.6 | 0 | 89.5 |
故障批次 | ADCAE-SEWeight | ADCAE-CSE | ||
---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |
1 | 2.5 | 98.0 | 2.0 | 99.0 |
2 | 0.5 | 98.5 | 0 | 100 |
4 | 0 | 99.0 | 0 | 100 |
Table 10 Fault alarm rate and fault detection rate of two methods
故障批次 | ADCAE-SEWeight | ADCAE-CSE | ||
---|---|---|---|---|
误报率/% | 故障检测率/% | 误报率/% | 故障检测率/% | |
1 | 2.5 | 98.0 | 2.0 | 99.0 |
2 | 0.5 | 98.5 | 0 | 100 |
4 | 0 | 99.0 | 0 | 100 |
1 | Zhang S M, Zhao C H, Gao F R. Incipient fault detection for multiphase batch processes with limited batches[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 103-117. |
2 | Ren J Y, Ni D. A batch-wise LSTM-encoder decoder network for batch process monitoring[J]. Chemical Engineering Research and Design, 2020, 164: 102-112. |
3 | Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773-3783. |
4 | Yu W K, Zhao C H, Huang B. Stationary subspace analysis-based hierarchical model for batch processes monitoring[J]. IEEE Transactions on Control Systems Technology, 2021, 29(1): 444-453. |
5 | Abbasi M A, Khan A Q, Mustafa G, et al. Data-driven fault diagnostics for industrial processes: an application to penicillin fermentation process[J]. IEEE Access, 2021, 9: 65977-65987. |
6 | Li L M, Zhao J, Wang C R, et al. Comprehensive evaluation of robotic global performance based on modified principal component analysis[J]. International Journal of Advanced Robotic Systems, 2020, 17(4): 172988141989688. |
7 | 邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
Deng J W, Deng X G, Cao Y P, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605. | |
8 | Uurtio V, Monteiro J M, Kandola J, et al. A tutorial on canonical correlation methods[J]. ACM Computing Surveys, 2018, 50(6): 1-33. |
9 | 高学金, 何紫鹤, 高慧慧, 等. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测[J]. 化工学报, 2022, 73(3): 1300-1314. |
Gao X J, He Z H, Gao H H, et al. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix[J]. CIESC Journal, 2022, 73(3): 1300-1314. | |
10 | Xiong W P, Li T C, Zeng Q X, et al. Research on partial least squares method based on deep confidence network in traditional Chinese medicine[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 4142824. |
11 | 胡益, 王丽, 马贺贺, 等. 基于核PLS方法的非线性过程在线监控[J]. 化工学报, 2011, 62(9): 2555-2561. |
Hu Y, Wang L, Ma H H, et al. Online nonlinear process monitoring using kernel partial least squares[J]. CIESC Journal, 2011, 62(9): 2555-2561. | |
12 | 常鹏, 王普, 高学金. 基于统计量模式分析的T-KPLS间歇过程故障监控[J]. 化工学报, 2015, 66(1): 265-271. |
Chang P, Wang P, Gao X J. Fault monitoring batch process based on statistics pattern analysis of T-KPLS[J]. CIESC Journal, 2015, 66(1): 265-271. | |
13 | 栗志意, 张卫强, 何亮, 等. 基于核函数的IVEC-SVM说话人识别系统研究[J]. 自动化学报, 2014, 40(4): 780-784. |
Li Z Y, Zhang W Q, He L, et al. Speaker recognition with kernel based IVEC-SVM[J]. Acta Automatica Sinica, 2014, 40(4): 780-784. | |
14 | Liu Y, Yang C, Gao Z L, et al. Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 174: 15-21. |
15 | Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
16 | Deng X G, Tian X M, Chen S, et al. Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2526-2540. |
17 | Wang Y J, Yu H L, Li X H. Efficient iterative dynamic kernel principal component analysis monitoring method for the batch process with super-large-scale data sets[J]. ACS Omega, 2021, 6(15): 9989-9997. |
18 | Tan R M, Ottewill J R, Thornhill N F. Monitoring statistics and tuning of kernel principal component analysis with radial basis function kernels[J]. IEEE Access, 2020, 8: 198328-198342. |
19 | Lee H, Kim C, Jeong D H, et al. Data-driven fault detection for chemical processes using autoencoder with data augmentation[J]. Korean Journal of Chemical Engineering, 2021, 38(12): 2406-2422. |
20 | Yan W W, Guo P J, Gong L, et al. Nonlinear and robust statistical process monitoring based on variant autoencoders[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 31-40. |
21 | Masci J, Meier U, Cireşan D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 52-59. |
22 | Yang J W, Lee Y D, Koo I S. Convolutional autoencoder-based sensor fault classification[C]//2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). Prague, Czech Republic: IEEE, 2018: 865-867. |
23 | Ma X, Liu Z Z, Zheng M X, et al. Application and exploration of self-attention mechanism in dynamic process monitoring[J]. IFAC-PapersOnLine, 2022, 55(6): 139-144. |
24 | Hassanin M, Anwar S, Radwan I, et al. Visual attention methods in deep learning: an in-depth survey[EB/OL]. 2022. . |
25 | Zhang H, Zu K K, Lu J, et al. EPSANet: an efficient pyramid squeeze attention block on convolutional neural network[EB/OL]. 2021. . |
26 | Luo X Y, Li X M, Wang Z Y, et al. Discriminant autoencoder for feature extraction in fault diagnosis[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 192: 103814. |
27 | Yang S K, Kong X G, Wang Q B, et al. Deep multiple auto-encoder with attention mechanism network: a dynamic domain adaptation method for rotary machine fault diagnosis under different working conditions[J]. Knowledge-Based Systems, 2022, 249: 108639. |
28 | Yu F, Liu J C, Liu D M, et al. Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104200. |
29 | Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
30 | Liu X, Yu J B, Ye L. Residual attention convolutional autoencoder for feature learning and fault detection in nonlinear industrial processes[J]. Neural Computing and Applications, 2021, 33(19): 12737-12753. |
31 | Aguado D, Ferrer A, Ferrer J, et al. Multivariate SPC of a sequencing batch reactor for wastewater treatment[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(1): 82-93. |
32 | Chen Q, Wynne R J, Goulding P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5): 531-543. |
33 | 于蕾, 邓晓刚, 曹玉苹, 等. 基于变量分组DTW-MCVA的不等长间歇过程故障检测方法[J]. 化工学报, 2019, 70(9): 3441-3448. |
Yu L, Deng X G, Cao Y P, et al. Fault detection method of unequal-length batch process based on VGDTW-MCVA[J]. CIESC Journal, 2019, 70(9): 3441-3448. | |
34 | Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565. |
35 | 刘毅, 王海清. Pensim仿真平台在青霉素发酵过程的应用研究[J]. 系统仿真学报, 2006, 18(12): 3524-3527. |
Liu Y, Wang H Q. Pensim simulator and its application in penicillin fermentation process[J]. Journal of System Simulation, 2006, 18(12): 3524-3527. | |
36 | 高学金, 刘腾飞, 徐子东, 等. 基于循环自动编码器的间歇过程故障监测[J]. 化工学报, 2020, 71(7): 3172-3179. |
Gao X J, Liu T F, Xu Z D, et al. Intermittent process fault monitoring based on recurrent autoencoder[J]. CIESC Journal, 2020, 71(7): 3172-3179. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[6] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[7] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[8] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[9] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[10] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[11] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[12] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[13] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[14] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[15] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||