1 |
黄继汤. 空化与空蚀的原理及应用[M]. 北京: 清华大学出版社, 1991.
|
|
Huang J T. Principle and Application of Cavitation[M]. Beijing: Tsinghua University Press, 1991.
|
2 |
陈伟中. 声空化物理[M]. 北京: 科学出版社, 2014.
|
|
Chen W Z. Acoustic Cavitation Physics[M]. Beijing: Science Press, 2014.
|
3 |
刘金河, 林书玉. 超声空化效应的新应用[C]// 2017中国西部声学学术交流会. 呼和浩特, 2017: 189-192.
|
|
Liu J H, Lin S Y. New application of ultrasonic cavitation effect[C]// 2017 China Western Acoustics Academic Exchange Conference Proceedings. Hohhot, 2017: 189-192.
|
4 |
Feng H, Barbosa-Canovas G, Weiss J. Ultrasound Technologies for Food and Bioprocessing[M]. New York: Springer-Verlag New York, 2011.
|
5 |
Neppiras E A. Acoustic cavitation[J]. Physics Reports, 1980, 61(3): 159-251.
|
6 |
Lee J, Ashokkumar M, Kentish S, et al. Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field[J]. Journal of the American Chemical Society, 2005, 127(48): 16810-16811.
|
7 |
朱昌平, 冯若, 何世传, 等. 用三种方法研究双频超声空化增强效应[J]. 南京大学学报(自然科学版), 2005, (1): 66-70.
|
|
Zhu C P, Feng R, He S C, et al. Enhancement effect of cavitation activity by two-frequency ultrasound irradiation based on three methods[J]. Journal of Nanjing University (Natural Sciences), 2005, (1): 66-70.
|
8 |
刘亚楠, 陈伟中, 黄威, 等. 稳态声空化泡的高精度测量技术[J]. 科学通报, 2005, (22): 2458-2462.
|
|
Liu Y N, Chen W Z, Huang W, et al. High-precision measurement technology of steady-state acoustic cavitation bubbles[J]. Chinese Science Bulletin, 2005, (22): 2458-2462.
|
9 |
孙冰. 基于FLUENT软件的超声空化数值模拟[D]. 大连: 大连海事大学, 2008.
|
|
Sun B. Numerical simulation of ultrasonic cavitation based on FLUENT[D]. Dalian: Dalian Maritime University, 2008.
|
10 |
Žnidarčič A, Mettin R, Dular M. Modeling cavitation in a rapidly changing pressure field-application to a small ultrasonic horn[J]. Ultrasonics Sonochemistry, 2015, 22: 482-492.
|
11 |
Petkovšek M, Dular M. IR measurements of the thermodynamic effects in cavitating flow[J]. International Journal of Heat and Fluid Flow, 2013, 44: 756-763.
|
12 |
Edmonds D K, Hord J. Cavitation in liquid cryogens[M]// Advances in Cryogenic Engineering. Boston: Springer, 1969: 274-282.
|
13 |
de Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging–diverging nozzles[J]. Cryogenics, 2012, 52(1): 35-44.
|
14 |
Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2015, 32(1): 71-82.
|
15 |
Chen T, Chen H, Liang W, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, (132): 618-630.
|
16 |
Zhu J, Chen Y, Zhao D, et al. Extension of the Schnerr-Sauer model for cryogenic cavitation[J]. European Journal of Mechanics- B/Fluids, 2015, 52: 1-10.
|
17 |
Zhu J, Zhao D, Xu L, et al. Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows[J]. International Journal of Hydrogen Energy, 2016, 41(1): 614-631.
|
18 |
Xue R, Ruan Y, Liu X, et al. Numerical study of liquid nitrogen cavitating flow through nozzles of various shapes[J]. Cryogenics, 2018, 94: 62-78.
|
19 |
Zhu J, Wang S, Qiu L, et al. Frequency characteristics of liquid hydrogen cavitating flow over a NACA0015 hydrofoil[J]. Cryogenics, 2018, 90: 7-19.
|
20 |
Dular M, Petkovšek M. Cavitation erosion in liquid nitrogen[J]. Wear, 2018, 400/401: 111-118.
|
21 |
韩占忠, 王敬, 兰小平. FLUENT流体工程仿真计算实例与应用[M]. 北京: 北京理工大学出版社, 2004.
|
|
Han Z Z, Wang J, Lan X P. FLUENT Fluid Engineering Simulation Calculation Example and Application[M]. Beijing: Beijing Institute of Technology Press, 2004.
|
22 |
刘春节, 吴小锋, 干为民, 等. 基于全空化模型的柱塞泵内空化流动数值模拟[J]. 中国机械工程, 2015, 26(24): 3341-3347.
|
|
Liu C J, Wu X F, Gan W M, et al. Numerical simulation of cavitation flow in piston pump based on full cavitation model[J]. China Mechanical Engineering, 2015, 26(24): 3341-3347.
|
23 |
Singhal A K, Atahavale M M, Li H, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124: 617-624.
|
24 |
Lemmon E W, Huber M L, Mclinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP.9.0[EB/OL]. Gaithersburg: National Institute of Standards and Technology, Standard Reference Data Program, 2010.
|
25 |
Žnidarčič A, Mettin R, Cairós C, et al. Attached cavitation at a small diameter ultrasonic horn tip[J]. Physics of Fluids, 2014, 26(2): 023304.
|
26 |
陈思. 压电换能器动态性能仿真研究[D]. 杭州: 浙江大学, 2016.
|
|
Chen S. Simulation study on the dynamic performance of piezoelectric transducer[D]. Hangzhou: Zhejiang University, 2016.
|
27 |
李宝星. 超声气蚀检测平台分析及设计[D]. 杭州: 杭州电子科技大学, 2016.
|
|
Li B X. The analysis and design of ultrasonic cavitation detection platform[D]. Hangzhou: Hangzhou Dianzi University, 2016.
|
28 |
朱佳凯. 低温空化非稳态特性和机理研究[D]. 杭州: 浙江大学, 2018.
|
|
Zhu J K. Study on unsteady characteristics and mechanisms of cryogenic cavitation[D]. Hangzhou: Zhejiang University, 2018.
|
29 |
Brennen C E. Cavitation and Bubble Dynamics[M]. New York: Oxford University Press, 1995.
|