CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4319-4329.DOI: 10.11949/0438-1157.20230859

• Energy and environmental engineering • Previous Articles     Next Articles

Study of the mechanism of pyrolysis of n-hexane initiated by 1-nitropropane

Ruizhe CHEN1(), Yongfeng LIU1(), Chenyang YIN1, Long WANG2, Lu ZHANG1, Jin’ou SONG3   

  1. 1.Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing University of Civil Engineering and Architecture, Beijing 102627, China
    2.School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    3.State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
  • Received:2023-08-18 Revised:2023-10-11 Online:2023-12-22 Published:2023-10-25
  • Contact: Yongfeng LIU

1-硝基丙烷引发正己烷热解的机理研究

陈睿哲1(), 刘永峰1(), 殷晨阳1, 王龙2, 张璐1, 宋金瓯3   

  1. 1.北京建筑大学北京市建筑安全监测工程技术研究中心,北京 102627
    2.四川大学化学工程学院,四川 成都 610065
    3.天津大学先进内燃动力全国重点实验室,天津 300072
  • 通讯作者: 刘永峰
  • 作者简介:陈睿哲(1999—),男,硕士研究生,1394592104@qq.com
  • 基金资助:
    国家自然科学基金项目(51976007);先进内燃动力全国重点实验室开放研究项目(K2023-04)

Abstract:

To investigate the mechanism of 1-nitropropane (1-NP) initiated n-C6H14 pyrolysis, molecular dynamics (MD) simulations and synchrotron radiation experiments were used to analyze the pyrolysis process of n-C6H14 before and after the addition of 1-NP. The SVUV-PIMS technique was used to identify and quantify the resulting pyrolysis products of both n-C6H14 and n-C6H14 with the addition of 10% 1-NP. The pyrolysis of n-C6H14 and 1-NP/n-C6H14 was simulated at different temperatures using ReaxFF MD simulations, which allowed an in-depth investigation of the effects of temperature and 1-NP addition on the pyrolysis rates, heat sink and product distribution. Based on the simulated species evolution and trajectory information, the reaction pathway of 1-NP initiated n-C6H14 pyrolysis was explored. The results showed that: the addition of 1-NP to n-C6H14 significantly increased the production of C2H4. The production of C2H4 from the pyrolysis of n-C6H14 with 10% 1-NP added at 2103 K is about 2.2 times that of pure n-C6H14. The addition of 1-NP improves the heat sink of the fuel and reduces the activation energy of the fuel. The primary pathway of pyrolysis of n-C6H14 initiated by 1-NP is that 1-NP first cleaves to form NO2 which then reacts with H to form OH. Secondly, the OH abstracts H from n-C6H14 to form C6H13. Finally, C6H13 is further cleaved to form 1-C3H7, 1-C4H8, 1-C5H10 and 2-C6H12.

Key words: nitropropane, n-hexane, pyrolysis, synchrotron radiation, molecular simulation, ReaxFF, reaction kinetics

摘要:

为研究1-硝基丙烷(1-NP)引发正己烷(n-C6H14)热解的作用机理,结合分子动力学(MD)模拟和同步辐射实验对添加1-NP前后的n-C6H14热解过程进行了分析。利用SVUV-PIMS技术鉴定并量化了n-C6H14和添加10% 1-NP的n-C6H14热解产物;利用ReaxFF MD模拟了不同温度下n-C6H14和1-NP/n-C6H14的热解,分析了温度和1-NP对n-C6H14热解速率、热沉以及产物分布的影响;根据模拟得到的物种演变与轨迹信息,探究了1-NP引发n-C6H14热解的反应路径。结果表明:向n-C6H14中添加1-NP后,C2H4产量显著增加,在2103 K温度下添加10%1-NP的n-C6H14热解产生的C2H4约为纯n-C6H14的2.2倍;添加1-NP提高了燃料的热沉,降低了燃料的活化能;1-NP引发n-C6H14热解的主要通道为:1-NP首先裂解产生NO2,NO2再与H反应生成OH,夺取n-C6H14的H生成C6H13,最后C6H13进一步裂解为1-C3H7、1-C4H8、1-C5H10和2-C6H12

关键词: 硝基丙烷, 正己烷, 热解, 同步辐射, 分子模拟, ReaxFF, 反应动力学

CLC Number: