CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2249-2263.DOI: 10.11949/0438-1157.20230170
• Reviews and monographs • Previous Articles Next Articles
Zhenghao YANG1(), Zhen HE1, Yulong CHANG1,2,3, Ziheng JIN1,2, Xia JIANG1,2()
Received:
2023-02-27
Revised:
2023-06-09
Online:
2023-07-27
Published:
2023-06-05
Contact:
Xia JIANG
杨峥豪1(), 何臻1, 常玉龙1,2,3, 靳紫恒1,2, 江霞1,2()
通讯作者:
江霞
作者简介:
杨峥豪(1998—),男,硕士研究生,645854663@qq.com
基金资助:
CLC Number:
Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis[J]. CIESC Journal, 2023, 74(6): 2249-2263.
杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263.
Add to citation manager EndNote|Ris|BibTeX
技术类型 | 加热速率/(℃/s) | 温度/℃ | 压力/MPa | 停留时间/s | 产率/%(质量) | ||
---|---|---|---|---|---|---|---|
液体 | 固体 | 气体 | |||||
快速热解[ | >100 | 400~600 | 0.1 | <2 | 65~75 | 10~25 | 10~20 |
慢速热解[ | 0.1~1 | 550~950 | 0.1 | 300~500 | 30 | 35 | 35 |
常规热解[ | 0.1~1 | 500~650 | 0.1 | 0.5~20 | 40~60 | 15~25 | 20~30 |
闪速热解[ | >1000 | 900~1200 | 0.1 | <1 | >75 | <15 | <10 |
Table 1 Characteristics of biomass pyrolysis technology
技术类型 | 加热速率/(℃/s) | 温度/℃ | 压力/MPa | 停留时间/s | 产率/%(质量) | ||
---|---|---|---|---|---|---|---|
液体 | 固体 | 气体 | |||||
快速热解[ | >100 | 400~600 | 0.1 | <2 | 65~75 | 10~25 | 10~20 |
慢速热解[ | 0.1~1 | 550~950 | 0.1 | 300~500 | 30 | 35 | 35 |
常规热解[ | 0.1~1 | 500~650 | 0.1 | 0.5~20 | 40~60 | 15~25 | 20~30 |
闪速热解[ | >1000 | 900~1200 | 0.1 | <1 | >75 | <15 | <10 |
反应器类型 | 优点 | 缺点 | 生物油产率/% |
---|---|---|---|
流化床反应器[ | 设计简单、操作方便、可连续运行、适合扩大规模 | 生物质预处理要求高、载气需求量高、固体损耗大 | 70~75 |
旋转锥反应器[ | 设计紧凑、不需要载气、磨损小 | 颗粒粒径要求高、工艺复杂、难以放大 | 70~75 |
烧蚀反应器[ | 载气需求量小、生物质粒径要求低、设备规模小、操作成本低 | 反应速率较慢且难以放大 | 70 |
真空热解反应器[ | 产品质量良好、生物质粒径要求低、载气需求量小、易提取组分且没有结焦问题 | 投资和维护成本高且难以放大 | 65 |
携带床反应器[ | 挥发分停留时间短,无结渣问题,适用于高温高压条件,且适合扩大规模 | 生物质粒径要求高、载气需求量高、设备规模大,并且很难从较低的蒸气分压中收集液体 | 50~55 |
Table 2 Characteristics of various fast pyrolysis reactors
反应器类型 | 优点 | 缺点 | 生物油产率/% |
---|---|---|---|
流化床反应器[ | 设计简单、操作方便、可连续运行、适合扩大规模 | 生物质预处理要求高、载气需求量高、固体损耗大 | 70~75 |
旋转锥反应器[ | 设计紧凑、不需要载气、磨损小 | 颗粒粒径要求高、工艺复杂、难以放大 | 70~75 |
烧蚀反应器[ | 载气需求量小、生物质粒径要求低、设备规模小、操作成本低 | 反应速率较慢且难以放大 | 70 |
真空热解反应器[ | 产品质量良好、生物质粒径要求低、载气需求量小、易提取组分且没有结焦问题 | 投资和维护成本高且难以放大 | 65 |
携带床反应器[ | 挥发分停留时间短,无结渣问题,适用于高温高压条件,且适合扩大规模 | 生物质粒径要求高、载气需求量高、设备规模大,并且很难从较低的蒸气分压中收集液体 | 50~55 |
年份 | 国家 | 研发单位 | 规模/(kg/h) | 反应器类型 | 加热方式 | 文献 |
---|---|---|---|---|---|---|
2019 | 韩国 | Research Institute of Petroleum Technology | 42 | 流化床/提升管 | 不凝性气体的燃烧 | [ |
2018 | 中国 | 上海交通大学 | 2000 | 流化床/下行床 | 热载体和电加热器 | [ |
2017 | 加拿大 | AE Cote-Nord Bioenergy/Ensyn | 9000 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
2014 | 荷兰 | BTG-BTL/EMPYRO | 5000 | 旋转锥 | 反应器壁加热 | [ |
2013 | 芬兰 | Fortum-VALMET | 10000 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
2005 | 马来西亚 | Genting | 2000 | 旋转锥 | 反应器壁加热 | [ |
2004 | 中国 | 中国科学技术大学 | 20 | 流化床 | 焦炭和不凝性气体的燃烧 | [ |
2000 | 加拿大 | Pyrovac | 3500 | 真空热解 | — | [ |
2000 | 荷兰 | BTG/Kara | 200 | 旋转锥 | 反应器壁加热 | [ |
1998 | 加拿大 | RTI | 20 | 流化床 | 反应器壁加热 | [ |
1997 | 加拿大 | Dynamotive | 3800 | 鼓泡流化床 | 热解气、炭、其他生物质产品燃烧 | [ |
1996 | 加拿大 | Red Arrow-Ensyn | 1667 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
1995 | 中国 | 沈阳农业大学/Twente | 50 | 旋转锥 | 反应器壁加热 | [ |
1993 | 西班牙 | Union Fenosa/Waterloo | 200 | 流化床 | 丙烷燃烧,热循环气 | [ |
1993 | 荷兰 | University of Twente | 10 | 旋转锥 | 反应器壁加热 | [ |
Table 3 Research and development of domestic and foreign pilot and demonstration/commercial biomass pyrolysis reactors
年份 | 国家 | 研发单位 | 规模/(kg/h) | 反应器类型 | 加热方式 | 文献 |
---|---|---|---|---|---|---|
2019 | 韩国 | Research Institute of Petroleum Technology | 42 | 流化床/提升管 | 不凝性气体的燃烧 | [ |
2018 | 中国 | 上海交通大学 | 2000 | 流化床/下行床 | 热载体和电加热器 | [ |
2017 | 加拿大 | AE Cote-Nord Bioenergy/Ensyn | 9000 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
2014 | 荷兰 | BTG-BTL/EMPYRO | 5000 | 旋转锥 | 反应器壁加热 | [ |
2013 | 芬兰 | Fortum-VALMET | 10000 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
2005 | 马来西亚 | Genting | 2000 | 旋转锥 | 反应器壁加热 | [ |
2004 | 中国 | 中国科学技术大学 | 20 | 流化床 | 焦炭和不凝性气体的燃烧 | [ |
2000 | 加拿大 | Pyrovac | 3500 | 真空热解 | — | [ |
2000 | 荷兰 | BTG/Kara | 200 | 旋转锥 | 反应器壁加热 | [ |
1998 | 加拿大 | RTI | 20 | 流化床 | 反应器壁加热 | [ |
1997 | 加拿大 | Dynamotive | 3800 | 鼓泡流化床 | 热解气、炭、其他生物质产品燃烧 | [ |
1996 | 加拿大 | Red Arrow-Ensyn | 1667 | 流化床/提升管 | 焦炭和不凝性气体的燃烧 | [ |
1995 | 中国 | 沈阳农业大学/Twente | 50 | 旋转锥 | 反应器壁加热 | [ |
1993 | 西班牙 | Union Fenosa/Waterloo | 200 | 流化床 | 丙烷燃烧,热循环气 | [ |
1993 | 荷兰 | University of Twente | 10 | 旋转锥 | 反应器壁加热 | [ |
反应器类型 | 优点 | 缺点 |
---|---|---|
提升管[ | 颗粒混合相对均匀, 传热效果较好, 可实现快速床操作, 单位时间处理量大, 存在多种进料方式, 满足多种产品需求 | 颗粒浓度、速度的径向分布不均匀, 颗粒返混严重,易过度裂解,降低产率, 由于壁面效应的影响,呈现出环核现象, 载气需求量大 |
下行床[ | 颗粒浓度和速度的轴、径向分布相对均匀, 颗粒轴向返混更小, 气固近平推流流动, 载气需求量小,减少气流输送的动量损耗, 可灵活调节气固比或固固比, 气固或固固停留时间极短、反应快, 单位时间处理量大 | 颗粒径向混合传热需要加强, 进料不稳定, 易受到操作条件和预处理的影响 |
Table 4 Advantages and disadvantages of riser reactor and downlink reactor
反应器类型 | 优点 | 缺点 |
---|---|---|
提升管[ | 颗粒混合相对均匀, 传热效果较好, 可实现快速床操作, 单位时间处理量大, 存在多种进料方式, 满足多种产品需求 | 颗粒浓度、速度的径向分布不均匀, 颗粒返混严重,易过度裂解,降低产率, 由于壁面效应的影响,呈现出环核现象, 载气需求量大 |
下行床[ | 颗粒浓度和速度的轴、径向分布相对均匀, 颗粒轴向返混更小, 气固近平推流流动, 载气需求量小,减少气流输送的动量损耗, 可灵活调节气固比或固固比, 气固或固固停留时间极短、反应快, 单位时间处理量大 | 颗粒径向混合传热需要加强, 进料不稳定, 易受到操作条件和预处理的影响 |
Fig.4 Gas-solid inertial separator (a)[65]; Wall-attached gas-solid separator (b)[66]; Downward bed cambered cone gas-solid separation device[67] (c); Gas-solid separation device (d)[68]; Particle separator (e)[69]
热载体种类 | 传热方式 | 优点 | 缺点 |
---|---|---|---|
气体 | 热对流 | 避免固体混合,操作简便 | 气体需求量大,成本较高, 传热效率相对较低, 稀释了热解蒸气,冷却负荷大 |
固体 | 热传导 | 设备体积需求小, 循环利用,提高系统热效率, 载气需求量小,总能耗小, 结构简单,易扩大规模 | 易对设备产生磨损, 固体混合、加热、提升、分离困难 |
Table 5 Advantages and disadvantages of solid and gas heat carriers in pyrolysis system
热载体种类 | 传热方式 | 优点 | 缺点 |
---|---|---|---|
气体 | 热对流 | 避免固体混合,操作简便 | 气体需求量大,成本较高, 传热效率相对较低, 稀释了热解蒸气,冷却负荷大 |
固体 | 热传导 | 设备体积需求小, 循环利用,提高系统热效率, 载气需求量小,总能耗小, 结构简单,易扩大规模 | 易对设备产生磨损, 固体混合、加热、提升、分离困难 |
反应器 | 生物质原料 | 热载体 | 运行条件 | 液体产品 | 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种类 | 粒径/mm | 含水率/% | 种类 | 粒径/mm | 处理量/(kg/h) | 温度/℃ | 停留时间/s | 生物油/ %(质量) | 热值/ (MJ/kg) | ||
混合式反应器 | |||||||||||
1 | 稻壳 | <5 | 11.2~14.5 | 陶瓷 | 1~2 | — | 502 | 1~3 | 51.8 | 16.2 | [ |
锯末 | 1~4.5 | <20 | 690 | 31.6 | 15.3 | ||||||
2 | 木屑 | <2 | — | — | — | — | — | 1~3 | 65 | 18~20 | [ |
秸秆 | 40 | ||||||||||
3 | 松木粉 | <6 | — | — | — | — | 450~600 | — | 68 | — | [ |
杨木粉 | 62 | ||||||||||
玉米秸秆 | 39 | ||||||||||
棉花秸秆 | 55 | ||||||||||
间接式和混合式联用反应器 | |||||||||||
4 | 稻壳 | <0.2 | 10 | 陶瓷 | 1.2~1.6 | 2330 | 550 | 2 | 48.1 | 18 | [ |
2170 | 46.3 | 17 | |||||||||
2100 | 53.2 | 16 | |||||||||
2190 | 47.6 | 16 | |||||||||
5 | 原生麦秸 | — | 1.49 | 河沙 | 0.23~0.28 | 4 | 400 | — | 46.1 | — | [ |
440 | 37 | ||||||||||
470 | 38.5 | ||||||||||
500 | 36.8 | ||||||||||
560 | 50.7 | ||||||||||
脱灰麦秸 | — | 4.09 | — | — | 400 | — | 60.9 | ||||
440 | 64 | 17 | |||||||||
470 | 50 | ||||||||||
500 | 49.8 | ||||||||||
560 | 33.1 | ||||||||||
机械接触式和混合式联用反应器 | |||||||||||
6 | 玉米 秸秆 | <1 | 10 | 陶瓷 | 2~3 | 15 | 525 | — | 53.3 | — | [ |
7 | 木屑 | 0.8 | 10.52 | 陶瓷 | 2~3 | 240 | 400 | <3 | 43 | — | [ |
450 | 45 | ||||||||||
500 | 52.5 | ||||||||||
550 | 44 |
Table 6 Experimental operating parameters and product yield of various downward circulating fluidized bed reactors
反应器 | 生物质原料 | 热载体 | 运行条件 | 液体产品 | 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种类 | 粒径/mm | 含水率/% | 种类 | 粒径/mm | 处理量/(kg/h) | 温度/℃ | 停留时间/s | 生物油/ %(质量) | 热值/ (MJ/kg) | ||
混合式反应器 | |||||||||||
1 | 稻壳 | <5 | 11.2~14.5 | 陶瓷 | 1~2 | — | 502 | 1~3 | 51.8 | 16.2 | [ |
锯末 | 1~4.5 | <20 | 690 | 31.6 | 15.3 | ||||||
2 | 木屑 | <2 | — | — | — | — | — | 1~3 | 65 | 18~20 | [ |
秸秆 | 40 | ||||||||||
3 | 松木粉 | <6 | — | — | — | — | 450~600 | — | 68 | — | [ |
杨木粉 | 62 | ||||||||||
玉米秸秆 | 39 | ||||||||||
棉花秸秆 | 55 | ||||||||||
间接式和混合式联用反应器 | |||||||||||
4 | 稻壳 | <0.2 | 10 | 陶瓷 | 1.2~1.6 | 2330 | 550 | 2 | 48.1 | 18 | [ |
2170 | 46.3 | 17 | |||||||||
2100 | 53.2 | 16 | |||||||||
2190 | 47.6 | 16 | |||||||||
5 | 原生麦秸 | — | 1.49 | 河沙 | 0.23~0.28 | 4 | 400 | — | 46.1 | — | [ |
440 | 37 | ||||||||||
470 | 38.5 | ||||||||||
500 | 36.8 | ||||||||||
560 | 50.7 | ||||||||||
脱灰麦秸 | — | 4.09 | — | — | 400 | — | 60.9 | ||||
440 | 64 | 17 | |||||||||
470 | 50 | ||||||||||
500 | 49.8 | ||||||||||
560 | 33.1 | ||||||||||
机械接触式和混合式联用反应器 | |||||||||||
6 | 玉米 秸秆 | <1 | 10 | 陶瓷 | 2~3 | 15 | 525 | — | 53.3 | — | [ |
7 | 木屑 | 0.8 | 10.52 | 陶瓷 | 2~3 | 240 | 400 | <3 | 43 | — | [ |
450 | 45 | ||||||||||
500 | 52.5 | ||||||||||
550 | 44 |
58 | Wang C X, Li C Y, Zhu J. Axial solids flow structure in a high density gas-solids circulating fluidized bed downer[J]. Powder Technology, 2015, 272: 153-164. |
59 | 刘文明, 袁起民. 下行床入口分布器的计算流体力学模拟研究[J]. 石油炼制与化工, 2022, 53(8): 73-78. |
Liu W M, Yuan Q M. Computational fluid dynamics simulation of gas-solid downer distributor[J]. Petroleum Processing and Petrochemicals, 2022, 53(8): 73-78. | |
60 | 李立新, 袁远平, 魏鑫波, 等. 一种下行式流化床生物质热解反应器: 208346091U[P]. 2018-06-08. |
Li L X, Yuan Y P, Wei X B, et al. A downer fluidized bed biomass pyrolysis reactor: 208346091U[P]. 2018- 06-08. | |
61 | 刘冬梅. 一种固体热载体循环的生物质热解系统: 108949203A[P]. 2020-06-30. |
Liu D. Biomass pyrolysis system for solid heat carrier circulation: 108949203A[P]. 2020-06-30. | |
62 | Pan X E, Lian W H, Yang J X, et al. Downer reactor simulation and its application on coal pyrolysis: a review[J]. Carbon Resources Conversion, 2022, 5(1): 35-51. |
63 | 祁春鸣, 俞青, 金涌, 等. 气-固并流下行惯性分离装置的研究[J].石油炼制与化工, 1989(12): 51-56. |
Qi C M, Yu Q, Jin Y, et al. A novel inertial separator for gas-solid suspension in concurrent downflow[J]. Petroleum Processing and Petrochemicals, 1989(12): 51-56. | |
64 | 魏飞, 金涌, 钱震, 等. 附壁切割式气固快速分离装置: 1267564A[P]. 2000-09-27. |
Wei F, Jin Y, Qian Z, et al. Wall-attached cutting type fast gas-solid separator: 1267564A[P]. 2000-09-27. | |
65 | Huard M, Briens C, Berruti F. A novel fast gas-solid separator for pyrolysis reactors[C]//Bioenergy-ii: Fuels & Chemicals from Renewable Resources, 2009. |
66 | Yu X, Makkawi Y, Ocone R, et al. A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas-solid separator (Ⅰ): Hydrodynamic performance[J]. Fuel Processing Technology, 2014, 126: 366-382. |
67 | Soanuch C, Korkerd K, Pareek V, et al. Fast pyrolysis downer reactor: effect of reactor geometry on the hydrodynamics[J]. Industrial & Engineering Chemistry Research, 2022, 61(11): 4153-4167. |
68 | Makkawi Y, Yu X, Ocone R. Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor[J]. Renewable Energy, 2019, 143: 1225-1234. |
69 | 李志合, 柏雪源, 李永军, 等. 下降管生物质热裂解液化反应器设计[J]. 农业机械学报, 2011, 42(9): 116-119, 115. |
Li Z H, Bai X Y, Li Y J, et al. Development of down flow tube reactor for bio-oil production from biomass flash pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(9): 116-119, 115. | |
70 | 宋文立, 林伟刚, 王泽, 等. 逆流下行床热解反应器中固体燃料的低温热解方法: 102127460A[P]. 2011-07-20. |
Song W, Lin W, Wang Z, et al. Low temperature pyrolysis method of solid fuel in counter flow downer pyrolysis reactor: 102127460A[P]. 2011-07-20. | |
71 | Bonilla J G, Dechet M A, Schmidt J, et al. Thermal rounding of micron-sized polymer particles in a downer reactor: direct vs indirect heating[J]. Rapid Prototyping Journal, 2020, 26: 1637-1646. |
72 | 田原宇, 梁鹏, 盖希坤. 自混合下行循环流化床生物质快速热解制燃料油[C]//2009全国可再生能源—生物质能利用技术研讨会论文集. 上海, 2009: 68-71. |
Tian Y Y, Liang P, Gai X K. Self-mixing downer circulating fluidized bed biomass fast pyrolysis to fuel oil[C]//National Symposium on Renewable Energy-Biomass Utilization Technology in 2009. Shanghai, 2009: 68-71. | |
73 | 田原宇. 一种可连续操作的固体有机物热解装置: 2511878Y[P]. 2002-09-18. |
Tian Y. Continuous-operation pyrolytic apparatus for solid organics: 2511878Y[P]. 2002-09-18. | |
74 | 田原宇, 梁鹏, 盖希坤, 等. 一种固体有机物自混合下行流化床快速热解工艺: 101481619A[P]. 2009-07-15. |
Tian Y, Liang P, Gai X, et al. Self-mixing downflow fluidized bed rapid pyrolysis process for solid organics: 101481619A[P]. 2009-07-15. | |
75 | 田原宇, 乔英云, 谢克昌, 等. 生物质下行循环床毫秒热解液化装置: 106800941A[P]. 2017-06-06. |
Tian Y, Qiao Y, Xie K, et al. Biomass downward circulating bed millisecond pyrolysis and liquefaction device: 106800941A[P]. 2017-06-06. | |
76 | 吴道洪, 张宏伟, 陈水渺. 一种快速热解生物质的系统: 206279139U[P]. 2017-06-27. |
Wu D H, Zhang H W, Chen S M. A system for fast pyrolysis of biomass: 206279139U[P].2017-06-27. | |
77 | 蔡文飞. 生物质热裂解制取生物油装置运转特性及机理研究[D]. 上海: 上海交通大学, 2018. |
Cai W F. Research on performance of pyrolysis equipment and mechanism of biomass fast pyrolysis for bio-oil production[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
78 | Cai W F, Liu R H, He Y F, et al. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor[J]. Fuel Processing Technology, 2018, 171: 308-317. |
79 | Li Z H, Li N, Yi W M, et al. Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis[J]. Fuel Processing Technology, 2017, 161: 182-192. |
80 | Fu P, Yi W M, Li Z H, et al. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor[J]. Energy Conversion and Management, 2017, 149: 570-578. |
1 | IEA. Global energy review: CO2 emissions in 2021[R]. Iea, Paris: IEA, 2022. |
2 | 中国产业发展促进会生物质能产业分会. 3060零碳生物质能发展潜力蓝皮书[R]. 中国产业发展促进会生物质能产业分会, 2021. |
China Association for Industrial Development and Promotion of Biomass Energy Industry Branch. 3060 blue book of zero-carbon biomass energy development potential [R]. Biomass Energy Industry Branch, China Association for Industrial Development Promotion, 2021. | |
3 | Jagger A. Biofuels for transport in 2050[J]. Biofuels, Bioproducts and Biorefining, 2011, 5(5): 481-485. |
4 | Kumar R, Strezov V, Weldekidan H, et al. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763. |
5 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
6 | IEA. An energy sector roadmap to carbon neutrality in China[R]. Paris: IEA, 2021. |
7 | Dabros T M H, Stummann M Z, Høj M, et al. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis[J]. Progress in Energy and Combustion Science, 2018, 68: 268-309. |
8 | 张溪, 张立龙, 李瑞, 等. 基于能量集成的秸秆生物质快速热解生命周期评价[J]. 化工学报, 2021, 72(5): 2792-2800. |
Zhang X, Zhang L L, Li R, et al. Life cycle assessment of straw fast pyrolysis based on energy integration[J]. CIESC Journal, 2021, 72(5): 2792-2800. | |
9 | 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J]. 生物质化学工程, 2019, 53(3): 46-58. |
81 | Zhang Y C, Yi W M, Fu P, et al. Numerical simulation and experiment on catalytic upgrading of biomass pyrolysis vapors in V-shaped downer reactors[J]. Bioresource Technology, 2019, 274: 207-214. |
82 | 张德俐. 新型下降管生物质热裂解液化装置的设计及试验研究[D]. 淄博: 山东理工大学, 2012. |
Zhang D L. Design and experiment on down flow tube reactor for biomass pyrolysis liquefaction[D]. Zibo: Shandong University of Technology, 2012. | |
83 | 丁同利, 杨学民, 谢建军. 脱灰预处理麦秸在下行循环流化床中快速热解的研究[C]//2005年中国生物质能技术与可持续发展研讨会论文集. 济南, 2005: 177-186. |
Ding T L, Yang X M, Xie J J. Study on the rapid pyrolysis of deashing wheat straw in descending circulating fluidized bed [C]//China Symposium on Biomass Energy Technology and Sustainable Development in 2005. Jinan, 2005: 177-186. | |
84 | 王祥, 李志合, 李艳美, 等. 新型下降管生物质热裂解液化装置的试验研究[J]. 农机化研究, 2015, 37(8): 230-233. |
Wang X, Li Z H, Li Y M, et al. Experiments on down flow tube reactor for biomass pyrolysis liquefaction[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 230-233. | |
85 | 祁春鸣, 俞芷青, 金涌, 等. 气-固并流下行系统中两相流体力学行为的研究[J]. 石油化工, 1990, 19(6): 365-371. |
Qi C M, Yu Z Q, Jin Y, et al. Hydrodynamics for concurrent downflow of gas-solid suspensions[J]. Petrochemical Technology, 1990, 19(6): 365-371. | |
86 | 漆小波, 张辉, 黄卫星, 等. 下行气固两相流与管内壁间的摩擦压降[J]. 化工学报, 2007, 58(7): 1685-1690. |
Qi X B, Zhang H, Huang W X, et al. Friction between gas-solid suspension and CFB downer wall[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1685-1690. | |
87 | Basu P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557. |
9 | Ji W X, Zeng M, Cong H B, et al. Research status and prospects of biomass pyrolysis reactor[J]. Biomass Chemical Engineering, 2019, 53(3): 46-58. |
10 | Li J E, Li N, Qiao Y Y, et al. Biomass pyrolysis liquefaction technique: state of research and development trends[J]. IOP Conference Series: Earth and Environmental Science, 2020, 558(2): 022016. |
11 | Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129: 695-716. |
12 | Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
13 | Raza M, Inayat A, Ahmed A, et al. Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing[J]. Sustainability, 2021, 13(19): 11061. |
14 | Mahmood A S N, Brammer J G, Hornung A, et al. The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 328-342. |
15 | Canabarro N, Soares J F, Anchieta C G, et al. Thermochemical processes for biofuels production from biomass[J]. Sustainable Chemical Processes, 2013, 1(1): 1-10. |
16 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
Hu E F, Zhao L X, Wu J, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
17 | Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
18 | Chandel M K, Alappat B J. Annular downflow layer in a recirculating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2006, 45(16): 5748-5754. |
19 | Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier[J]. Biomass and Bioenergy, 2000, 18(6): 489-497. |
88 | Sun Z N, Zhu J, Zhang C. Numerical study on the hydrodynamics in high-density gas-solid circulating fluidized bed downer reactors[J]. Powder Technology, 2020, 370: 184-196. |
89 | Wang C X, Li C Y, Zhu J, et al. A comparison of flow development in high density gas-solids circulating fluidized bed downer and riser reactors[J]. AIChE Journal, 2015, 61(4): 1172-1183. |
90 | Wang C X, Zhu J, Lan X Y, et al. Radial solids flow structure in high flux gas-solids circulating fluidized bed downers[J]. Powder Technology, 2016, 301: 848-857. |
91 | 王成秀, 李婧雅, 苏鑫, 等. 高密度下行床颗粒浓度与颗粒速度分布特性[J]. 化学反应工程与工艺, 2020, 36(1): 17-25. |
Wang C X, Li J Y, Su X, et al. Distribution of solid holdup and particle velocity in a high density gas-solids circulating fluidized bed downer[J]. Chemical Reaction Engineering and Technology, 2020, 36(1): 17-25. | |
92 | Zhang H, Zhu J X. Hydrodynamics in downflow fluidized beds (2): Particle velocity and solids flux profiles[J]. Chemical Engineering Science, 2000, 55(19): 4367-4377. |
93 | 赵亚飞, 范怡平, 吕涵, 等. 下行床内Kutta-Joukowski横向力与颗粒浓度径向分布[J]. 高校化学工程学报, 2020, 34(2): 420-431. |
Zhao Y F, Fan Y P, Lyu H, et al. Radial distributions of Kutta-Joukowski force and particle concentration in a downer[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 420-431. | |
94 | 赵亚飞. 气固两相下行床颗粒浓度径向分布特性机制分析[D]. 北京: 中国石油大学(北京), 2020. |
Zhao Y F. Mechanism analysis of particle concentration radial distribution in gas-solid two-phase downer[D]. Beijing: China University of Petroleum, 2020. | |
95 | 祝媛, 张济宇, 谢克昌. 二元颗粒混合物在下行床反应器中局部颗粒速度的分布[J]. 化工学报, 2004, 55(11): 1777-1786. |
Zhu Y, Zhang J Y, Xie K C. Radial distribution characteristics of local particle velocity for binary particle mixture in downers[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(11): 1777-1786. | |
96 | 袁守正, 陈啸, 蒋鸣, 等. 气固下行床中壁面对介尺度曳力的影响规律探究 [J]. 化工进展, 2023, 42 (5): 2272-2281. |
Yuan S Z, Chen X, Jiang M, et al. The influence of the wall on the mesoscale drag force in a gas-solid downer[J]. Chemical Industry and Engineering Progress, 2023, 42 (5): 2272-2281. | |
97 | Wei F, Wang Z W, Jin Y, et al. Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed[J]. Powder Technology, 1994, 81(1): 25-30. |
98 | Unger L, Gómez Bonilla J S, dos Santos D A, et al. Particle residence time distribution in a concurrent multiphase flow reactor: experiments and euler-lagrange simulations[J]. Processes, 2022, 10(5): 996. |
99 | 魏飞, 刘金忠, 金涌, 等. 气固并流下行床气体扩散行为的研究[J]. 化工学报, 1994, 45(4): 429-434. |
Wei F, Liu J Z, Jin Y, et al. Gas mixing in a cocurrent downflow circulating fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 1994, 45(4): 429-434. | |
100 | 晏东, 罗保林. 并流下行循环流化床反应器气固传质模型[J]. 化工学报, 1997, 48(4): 471-476. |
Yan D, Luo B L. The model for gas-solid mass transfer in cocurrent downflow circulating fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(4): 471-476. | |
20 | Zhu J X, Yu Z Q, Jin Y, et al. Cocurrent downflow circulating fluidized bed (downer) reactors—a state of the art review[J]. The Canadian Journal of Chemical Engineering, 1995, 73(5): 662-677. |
21 | Peacocke G V C, Bridgwater A V. Ablative plate pyrolysis of biomass for liquids[J].Biomass and Bioenergy, 1994, 7(1-6): 147-154. |
22 | Yang J, Blanchette D, de Caumia B, et al. Modelling, Scale-up and demonstration of a vacuum pyrolysis reactor[M]//Progress in Thermochemical Biomass Conversion. Oxford, UK: Blackwell Science Ltd, 2008: 1296-1311. |
23 | Venderbosch R, Prins W. Fast pyrolysis technology development[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(2): 178-208. |
24 | Isahak W N R W, Hisham M W M, Yarmo M A, et al. A review on bio-oil production from biomass by using pyrolysis method[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5910-5923. |
25 | Zhang Y S, Zhao L L, Guo R T, et al. Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor[J]. Journal of Environmental Sciences, 2015, 33: 156-162. |
26 | Bridgwater A V, Peacocke G V C. Fast pyrolysis processes for biomass[J]. Renewable and Sustainable Energy Reviews, 2000, 4(1): 1-73. |
27 | Park J Y, Kim J K, Oh C H, et al. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization[J]. Journal of Environmental Management, 2019, 234: 138-144. |
28 | Cai W F, Liu R H. Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production[J]. Fuel, 2016, 182: 677-686. |
29 | Bridgwater A V, Meier D, Radlein D. An overview of fast pyrolysis of biomass[J]. Organic Geochemistry, 1999, 30(12): 1479-1493. |
30 | Hu X, Gholizadeh M. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
31 | Ringer M, Putsche V, Scahill J. Large-scale pyrolysis oil production: a technology assessment and economic analysis[J]. assessment, 2006. |
32 | Meier D, van de Beld B, Bridgwater A V, et al. State-of-the-art of fast pyrolysis in IEA bioenergy member countries[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 619-641. |
33 | 林木森, 蒋剑春. 生物质快速热解技术现状[J]. 生物质化学工程, 2006, 40(1): 21-26. |
Lin M S, Jiang J C. A review on fast pyrolysis of biomass[J]. Biomass Chemical Engineering, 2006, 40(1): 21-26. | |
34 | Kan T, Strezov V, Evans T J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. |
35 | 祝京旭, 魏飞, 杨勇林. 气固下行流化床反应器(Ⅰ): 下行管反应器的发展及其应用[J]. 化学反应工程与工艺, 1996, 12(2): 214-224. |
Zhu J X, Wei F, Yang Y L. Cocurrent gas-solid downflow fluidized bed (downer)reactors (Ⅰ): Development and applications[J]. Chemical Reaction Engineering and Technology, 1996, 12(2): 214-224. | |
36 | Grace J R, Lim C J, Brereton C M H, et al. Circulating fluidized bed reactor design and operation[J]. Sadhana, 1987, 10(1): 35-48. |
37 | Leckner B. Heat and mass transfer to/from active particles in a fluidized bed—an analysis of the Baskakov-Palchonok correlation[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120860. |
38 | Berg D A, Sumner R J, Meunier M, et al. The ultra-rapid fluidized (URF) reactor, a major new reactor system[M]//Circulating Fluidized Bed Technology. Amsterdam: Elsevier, 1986: 377-383. |
39 | Bergougnou M A, Briens C L, Kunii D. Design aspects of industrial fluidized bed reactors. research needs. selected subjects[M]//de Lasa H I. Chemical Reactor Design and Technology. Dordrecht: Springer, 1986: 305-347. |
40 | Murphy J R. Evolutionary design changes mark FCC process[J]. Oil & Gas Journal, 1992, 90: 49-58. |
41 | Fushimi C, Okuyama S, Kobayashi M, et al. Pyrolysis of low-rank coal with heat-carrying particles in a downer reactor[J]. Fuel Processing Technology, 2017, 167: 136-145. |
42 | Cheng Y, Wu C N, Zhu J X, et al. Downer reactor: from fundamental study to industrial application[J]. Powder Technology, 2008, 183(3): 364-384. |
43 | Ding T, Li S, Xie J, et al. Rapid pyrolysis of wheat straw in a bench-scale circulating fluidized-bed downer reactor[J]. Chemical Engineering & Technology, 2012, 35(12): 2170-2176. |
44 | 姚百胜, 罗保林. 并流下行式循环流化床研究进展[J]. 化工冶金, 1998(3): 282-288. |
Yao B S, Luo B L. The retrospect and prospect of study on cocurrent downflow circulating fluidized beds[J]. Engineering Chemistry & Metallurgy, 1998(3): 282-288. | |
45 | 张明辉, 钱震, 魏飞, 等. 大型下行式循环流化床反应器颗粒浓度分布研究[J]. 高校化学工程学报, 2002, 16(6): 621-625. |
Zhang M H, Qian Z, Fei W, et al. Study on radial solid-fraction profiles in large-scale downer reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 621-625. | |
46 | Lim K S, Zhu J X, Grace J R. Hydrodynamics of gas-solid fluidization[J]. International Journal of Multiphase Flow, 1995, 21: 141-193. |
47 | 刘姗, 杨雪银, 任学勇, 等. 生物质热解油基绿色化学品与化工产品研究进展[J]. 化工新型材料, 2017, 45(11): 17-20, 24. |
Liu S, Yang X Y, Ren X Y, et al. Research progress of biomass pyrolysis oil based green chemicals and chemical products[J]. New Chemical Materials, 2017, 45(11): 17-20, 24. | |
48 | 刘晋. 高密度气固下行循环流化床内颗粒聚团特性研究[D]. 北京: 中国石油大学(北京), 2019. |
Liu J. Study on the characteristics of particle clusters in a high density circulating fluidized downer reactor[D]. Beijing: China University of Petroleum, 2019. | |
49 | 王成秀. 循环流化床反应器的增浓—高密度提升管及下行床流体力学特性研究[D]. 东营: 中国石油大学(华东), 2014. |
Wang C X. Increasing the density of circulating fluidized bed reactors—hydrodynamics in high-density riser and downer[D]. Dongying: China University of Petroleum, 2014. | |
50 | Johnston P M, Zhu J X, de Lasa H I, et al. Effect of distributor designs on the flow development in downer reactor[J]. AIChE Journal, 1999, 45(7): 1587-1592. |
51 | Zhu J X, Ma Y, Zhang H. Gas-solids contact efficiency in the entrance region of a co-current downflow fluidized bed (downer)[J]. Chemical Engineering Research and Design, 1999, 77(2): 151-158. |
52 | 王成秀, 祝京旭, 蓝兴英, 等. 下行床内提高颗粒浓度及改善颗粒分布研究进展[J]. 化工学报, 2015, 66(8): 2810-2816. |
Wang C X, Zhu J X, Lan X Y, et al. Research progress of solids holdup increase and solids distribution enhancement in downer reactors[J]. CIESC Journal, 2015, 66(8): 2810-2816. | |
53 | 程易, 魏飞, 林仟, 等. 垂直气固并流上行/下行系统完全发展段的混沌研究[J]. 化工学报, 1998, 49(2): 185-193. |
Cheng Y, Wei F, Lin Q, et al. Chaotic characteristics of cocurrent upflow and downflow gas/solids systems in developed regime of vertical pipes[J]. Journal of Chemical Industry and Engineering (China), 1998, 49(2): 185-193. | |
54 | 钱震, 张明辉, 余皓, 等. 基于强湍流分散的下行床入口结构[J]. 化工学报, 2004, 55(8): 1249-1255. |
Qian Z, Zhang M H, Yu H, et al. Downer entrance structure based on strong turbulence dispersion [J]. Journal of Chemical Industry and Engineering(China), 2004, 55(8): 1249-1255. | |
55 | 魏飞, 刘金忠, 金涌. 下行床入口段流体力学及混合行为[J]. 化工学报, 1998, 49(1): 28-38. |
Wei F, Liu J Z, Jin Y. Hydrodynamics and mixing behaviour in entrance of downer[J]. Journal of Chemical Industry and Engineering (China), 1998, 49(1): 28-38. | |
56 | 李志强,吴昌宁,魏飞 等.高密度下行床提升管耦合反应器内的气固流动行为[J]. 化工学报, 2005, 56(5): 816-822. |
Li Z Q, Wu C N, Wei F, et al. High-density gas-solids flow in downer-riser coupled circulating fluidized reactor[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 816-822. | |
57 | Liu W, Luo K B, Zhu J X, et al. Characterization of high-density gas-solids downward fluidized flow[J]. Powder Technology, 2001, 115(1): 27-35. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[6] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[7] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[8] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[9] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[10] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[11] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[12] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[13] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[14] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[15] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||