CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 900-913.DOI: 10.11949/0438-1157.20240030
• Separation engineering • Previous Articles Next Articles
Lei XING1,2,3(), Shuai GUAN1,2, Minghu JIANG1,2(), Lixin ZHAO1,2, Meng CAI2,4, Hailong LIU5, Dehai CHEN1,2
Received:
2024-01-05
Revised:
2024-02-14
Online:
2024-05-11
Published:
2024-03-25
Contact:
Minghu JIANG
邢雷1,2,3(), 关帅1,2, 蒋明虎1,2(), 赵立新1,2, 蔡萌2,4, 刘海龙5, 陈德海1,2
通讯作者:
蒋明虎
作者简介:
邢雷(1990—),男,博士,副教授, Nepuxinglei@163.com
基金资助:
CLC Number:
Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio[J]. CIESC Journal, 2024, 75(3): 900-913.
邢雷, 关帅, 蒋明虎, 赵立新, 蔡萌, 刘海龙, 陈德海. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913.
Add to citation manager EndNote|Ris|BibTeX
结构参数 | 数值 |
---|---|
螺旋流道长度L1/mm | 100 |
分离腔长度L2/mm | 80 |
沉降腔长度L3/mm | 100 |
分离腔直径D1/mm | 94 |
沉降腔直径D2/mm | 86 |
锥角θ/(°) | 40 |
Table 1 Initial structure parameters of fluid domain of gas-liquid separator
结构参数 | 数值 |
---|---|
螺旋流道长度L1/mm | 100 |
分离腔长度L2/mm | 80 |
沉降腔长度L3/mm | 100 |
分离腔直径D1/mm | 94 |
沉降腔直径D2/mm | 86 |
锥角θ/(°) | 40 |
因素 | 水平 | ||
---|---|---|---|
编号 | 名称 | 下水平(-1) | 上水平(+1) |
A | 螺旋流道长度L1/mm | 100 | 200 |
B | 分离腔长度L2/mm | 100 | 500 |
C | 锥度θ/(°) | 20 | 80 |
D | 沉降腔长度L3/mm | 100 | 500 |
E | 沉降腔直径D2/mm | 80 | 92 |
Table 2 Factors and level values of PB test
因素 | 水平 | ||
---|---|---|---|
编号 | 名称 | 下水平(-1) | 上水平(+1) |
A | 螺旋流道长度L1/mm | 100 | 200 |
B | 分离腔长度L2/mm | 100 | 500 |
C | 锥度θ/(°) | 20 | 80 |
D | 沉降腔长度L3/mm | 100 | 500 |
E | 沉降腔直径D2/mm | 80 | 92 |
序号 | A | B | C | D | E | 分离效率E/% |
---|---|---|---|---|---|---|
1 | 1 | 1 | -1 | -1 | -1 | 70.2 |
2 | 1 | -1 | 1 | 1 | 1 | 33.9 |
3 | -1 | -1 | -1 | -1 | -1 | 80.4 |
4 | -1 | -1 | -1 | 1 | -1 | 85.5 |
5 | 1 | -1 | 1 | 1 | -1 | 89.8 |
6 | 1 | 1 | -1 | 1 | 1 | 61.9 |
7 | -1 | 1 | 1 | 1 | -1 | 78.1 |
8 | -1 | 1 | 1 | -1 | 1 | 60.9 |
9 | 1 | -1 | -1 | -1 | 1 | 73.9 |
10 | -1 | 1 | -1 | 1 | 1 | 60.7 |
11 | 1 | 1 | 1 | -1 | -1 | 70.7 |
12 | -1 | -1 | 1 | -1 | 1 | 28 |
Table 3 PB test scheme and simulation results
序号 | A | B | C | D | E | 分离效率E/% |
---|---|---|---|---|---|---|
1 | 1 | 1 | -1 | -1 | -1 | 70.2 |
2 | 1 | -1 | 1 | 1 | 1 | 33.9 |
3 | -1 | -1 | -1 | -1 | -1 | 80.4 |
4 | -1 | -1 | -1 | 1 | -1 | 85.5 |
5 | 1 | -1 | 1 | 1 | -1 | 89.8 |
6 | 1 | 1 | -1 | 1 | 1 | 61.9 |
7 | -1 | 1 | 1 | 1 | -1 | 78.1 |
8 | -1 | 1 | 1 | -1 | 1 | 60.9 |
9 | 1 | -1 | -1 | -1 | 1 | 73.9 |
10 | -1 | 1 | -1 | 1 | 1 | 60.7 |
11 | 1 | 1 | 1 | -1 | -1 | 70.7 |
12 | -1 | -1 | 1 | -1 | 1 | 28 |
序号 | 气液分离腔长度x1 | 锥度x2 | 沉降腔长度x3 | 分离效率/% |
---|---|---|---|---|
1 | 0 | 0 | 0 | 85.1 |
2 | -1 | -1 | 0 | 82.9 |
3 | 1 | -1 | 0 | 79.4 |
4 | 1 | 1 | 0 | 79.3 |
5 | 0 | 0 | 0 | 85.1 |
6 | 1 | 0 | 1 | 80.6 |
7 | 0 | 1 | -1 | 80.4 |
8 | 0 | 1 | 1 | 82.6 |
9 | 1 | 0 | -1 | 78.3 |
10 | 0 | -1 | 1 | 81.5 |
11 | 0 | 0 | 0 | 85.1 |
12 | -1 | 1 | 0 | 83.6 |
13 | -1 | 0 | 1 | 81.1 |
14 | 0 | 0 | 0 | 85.1 |
15 | 0 | -1 | -1 | 80.4 |
16 | -1 | 0 | -1 | 83.1 |
17 | 0 | 0 | 0 | 85.1 |
Table 4 BBD design and test results
序号 | 气液分离腔长度x1 | 锥度x2 | 沉降腔长度x3 | 分离效率/% |
---|---|---|---|---|
1 | 0 | 0 | 0 | 85.1 |
2 | -1 | -1 | 0 | 82.9 |
3 | 1 | -1 | 0 | 79.4 |
4 | 1 | 1 | 0 | 79.3 |
5 | 0 | 0 | 0 | 85.1 |
6 | 1 | 0 | 1 | 80.6 |
7 | 0 | 1 | -1 | 80.4 |
8 | 0 | 1 | 1 | 82.6 |
9 | 1 | 0 | -1 | 78.3 |
10 | 0 | -1 | 1 | 81.5 |
11 | 0 | 0 | 0 | 85.1 |
12 | -1 | 1 | 0 | 83.6 |
13 | -1 | 0 | 1 | 81.1 |
14 | 0 | 0 | 0 | 85.1 |
15 | 0 | -1 | -1 | 80.4 |
16 | -1 | 0 | -1 | 83.1 |
17 | 0 | 0 | 0 | 85.1 |
1 | 邢雷, 苗春雨, 蒋明虎, 等. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74 (8): 3394-3406. |
Xing L, Miao C Y, Jiang M H, et al. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone[J]. CIESC Journal, 2023, 74(8): 3394-3406. | |
2 | Wu J W, Zhang S F, Duan X X, et al. Removal and recycling of the organic pollutants from the oily hazardous wastes by cyclone deoiling technology[J]. Resources, Conservation and Recycling, 2023, 196: 107036. |
3 | 刘姝, 张玉, 孙治谦, 等. 天然气脱水技术研究进展[J]. 化工机械, 2022, 49(4): 574-580. |
Liu S, Zhang Y, Sun Z Q, et al. Research progress in natural gas dehydration technologies[J]. Chemical Engineering & Machinery, 2022, 49(4): 574-580. | |
4 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
Liu H, Gao Y, Pei X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
5 | 龚海峰, 罗鑫, 彭烨, 等. 工业废油异构旋流三相分离装置去固结构及优化[J]. 化工学报, 2022, 73(11): 5025-5038. |
Gong H F, Luo X, Peng Y, et al. Desolidification structure and optimization of specially-shaped hydrocyclone three-phase separation device for industrial waste oil[J]. CIESC Journal, 2022, 73(11): 5025-5038. | |
6 | 刘培坤, 王华健, 赵振江, 等. 气液比对压裂返排液旋流除砂器性能的影响[J]. 天然气工业, 2019, 39(11): 44-54. |
Liu P K, Wang H J, Zhao Z J, et al. Effect of gas-liquid ratio on the performance of hydrocyclones for desanding flowback fracturing fluids[J]. Natural Gas Industry, 2019, 39(11): 44-54. | |
7 | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
Zheng C F, Yang W Y, Meng X R, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
8 | 郑春峰, 杨万有, 李昂, 等. 一种新型井下三级高效气液分离器分离特性实验[J]. 石油钻采工艺, 2020, 42(6): 804-810. |
Zheng C F, Yang W Y, Li A, et al. Experimental on the separation behaviors of a new type of three-stage efficient downhole gas-liquid separator[J]. Oil Drilling & Production Technology, 2020, 42(6): 804-810. | |
9 | 周宇航, 陈建义, 王亚安, 等. 基于液膜流型的双入口管柱式气液分离器性能研究[J]. 化工学报, 2022, 73(3): 1221-1231. |
Zhou Y H, Chen J Y, Wang Y A, et al. Research on performance of dual-inlet gas-liquid cylindrical cyclone based on liquid film flow pattern[J]. CIESC Journal, 2022, 73(3): 1221-1231. | |
10 | 刘彩玉, 张爽, 耿海洋, 等. 同向出流气液分离器流场分析及结构参数优选[J]. 石油机械, 2020, 48(2): 90-96. |
Liu C Y, Zhang S, Geng H Y, et al. Flow field analysis and parameters optimization of a co-rotating outflow gas-liquid separation hydrocyclone[J]. China Petroleum Machinery, 2020, 48(2): 90-96. | |
11 | 邢树宾, 陈瑶瑶, 杨乐乐, 等. 基于气液分离的天然气双入口优化设计[J]. 天然气工业, 2023, 43(2): 114-120. |
Xing S B, Chen Y Y, Yang L L, et al. Design optimization of natural gas double inlets based on gas-liquid separation[J]. Natural Gas Industry, 2023, 43(2): 114-120. | |
12 | 杨蕊, 肖迎松, 张磊, 等. 柱锥式气液旋流器的数值模拟和试验验证[J]. 流体机械, 2023, 51(7): 53-59. |
Yang R, Xiao Y S, Zhang L, et al. Numerical simulation and experimental verification of cylindrical-cone gas-liquid cyclone[J]. Fluid Machinery, 2023, 51(7): 53-59. | |
13 | 孙婧元, 刘文剑, 楼佳明, 等. 折流式气液分离器内流场的数值模拟与实验研究[J]. 北京理工大学学报, 2011, 31(12): 1455-1460. |
Sun J Y, Liu W J, Lou J M, et al. Numerical simulation and experimental investigation of flow field in gas-liquid cylindrical separator with baffle configuration[J]. Transactions of Beijing Institute of Technology, 2011, 31(12): 1455-1460. | |
14 | Zhou Y H, Chen J Y, Wang Y A, et al. Experimental and numerical study on the performance of a new dual-inlet gas-liquid cylindrical cyclone (GLCC) based on flow pattern conditioning[J]. Chemical Engineering Journal, 2023, 453: 139778. |
15 | 高金明, 郭玉娇, 鄂承林, 等. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 47(7): 2957-2966. |
Gao J M, Guo Y J, E C L, et al. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood[J]. CIESC Journal, 2023, 47(7): 2957-2966. | |
16 | Wang Q Q, Chen J Q, Wang C S, et al. Design and performance study of a two-stage inline gas-liquid cyclone separator with large range of inlet gas volume fraction[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111218. |
17 | 魏纳, 陈光凌, 郭平, 等. 天然气水合物脱气装置研制及性能试验[J]. 石油钻探技术, 2017, 45(2): 121-126. |
Wei N, Chen G L, Guo P, et al. The development and experimental testing of gas hydrate degassing devices[J]. Petroleum Drilling Techniques, 2017, 45(2): 121-126. | |
18 | Meng F C. Study of the performance of a new kind of downhole gas-liquid separation with high gas content[J]. Journal of Energy and Natural Resources, 2019, 8(2): 45. |
19 | 李敏. 井下气液分离及回注系统研究[J]. 石油矿场机械, 2006, 35(2): 27-30. |
Li M. A new downhole gas/water separation and reinjection system[J]. Oil Field Equipment, 2006, 35(2): 27-30. | |
20 | Lan W J, Wang H X, Li Y Q, et al. Numerical and experimental investigation on a downhole gas-liquid separator for natural gas hydrate exploitation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109743. |
21 | 李腾, 孙治谦, 王朝磊, 等. 微型双蜗式气液旋流分离器数值模拟研究[J]. 石油机械, 2022, 50(6): 98-105. |
Li T, Sun Z Q, Wang C L, et al. Numerical simulation of micro double volute gas-liquid cyclone separator[J]. China Petroleum Machinery, 2022, 50(6): 98-105. | |
22 | 杨军卫, 赵加民, 王建军, 等. 气液旋流器内液相平均停留时间[J]. 化工学报, 2015, 66(11): 4373-4379. |
Yang J W, Zhao J M, Wang J J, et al. Mean residence time of liquid phase in gas-liquid cyclone[J]. CIESC Journal, 2015, 66(11): 4373-4379. | |
23 | 蔡禄, 武晓波, 孙治谦, 等. 双蜗壳旋流器内部流场及液膜特性的数值模拟[J]. 石油机械, 2022, 50(10): 111-118, 141. |
Cai L, Wu X B, Sun Z Q, et al. Numerical simulation on internal flow field and liquid film characteristics of double volute cyclone[J]. China Petroleum Machinery, 2022, 50(10): 111-118, 141. | |
24 | 王庆锋, 李中, 李凯, 等. 高气液比工况的管柱式气液分离器分离性能研究[J]. 流体机械, 2018, 46(7): 32-35, 19. |
Wang Q F, Li Z, Li K, et al. Research on separation performance of gas-liquid cylindrical cyclone under the condition of high gas liquid ratio[J]. Fluid machinery, 2018, 46(7): 32-35, 19. | |
25 | 许萧. 旋转湍流强化液体中气泡及溶解性气体分离的机理[D]. 上海: 华东理工大学, 2018. |
Xu X. Enhanced separation of bubbles and dissolved gas by swirling turbulence[D]. Shanghai: East China University of Science and Technology, 2018. | |
26 | Zeng X B, Zheng C F, Zhao L, et al. The statistical characteristic study of bubble trajectory in an axial separator by a Lagrange method[J]. Chemical Engineering Research and Design, 2021, 175: 124-130. |
27 | 梁龙辉. 超音速旋流分离器的流场特性分析与脱水性能研究[D]. 青岛: 青岛科技大学, 2019. |
Liang L H. Analysis of flow field characteristics and investigate on dehydration performance of supersonic cyclone separator[D].Qingdao: Qingdao University of Science & Technology, 2019. | |
28 | 黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
Haung K T, Chen J Y, Chen Y, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41. | |
29 | 李娟, 闫小康, 李晓恒, 等. 旋流器内部流场的数值模拟方法研究[J]. 煤炭学报, 2019, 44(10): 3250-3257. |
Li J, Yan X K, Li X H, et al. Numerical simulation on internal fluid field in cyclone[J]. Journal of China Coal Society, 2019, 44(10): 3250-3257. | |
30 | Mehdi A, Mohsen A, Ali M. A CFD study of the effect of cyclone size on its performance parameters[J]. Journal of Hazardous Materials, 2010, 182: 835-841. |
31 | Sreedharan A, Ong S. Combination of Plackett Burman and response surface methodology experimental design to optimize Malachite green dye removal from aqueous environment[J]. Chemical Data Collections, 2020, 25: 100317. |
32 | 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005. |
Li Y Y, Hu C R. Experiment Design and Data Processing[M]. Beijing: Chemical Industry Press, 2005. |
[1] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[2] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of multi-stage spiral separator [J]. CIESC Journal, 2023, 74(11): 4587-4599. |
[3] | GAO Wa, RAN Xiangkun, ZHAO Hanqing, ZHAO Yufei. Research progress of catalytic materials based on Mg-based layered double hydroxides [J]. CIESC Journal, 2021, 72(6): 2934-2956. |
[4] | ZHOU Jie, WEN Chen, WU Jiapeng, XIAO Changfa. Properties and structure of PVDF membrane modified by Ag3PO4 powders [J]. CIESC Journal, 2015, 66(1): 471-477. |
[5] | WU Yun, ZHANG Nan, ZHANG Hongwei, JIA Hui. CFD simulation of internal hydrodynamic characteristics and optimization of membrane module in membrane aerated biofilm reactor [J]. CIESC Journal, 2015, 66(1): 402-409. |
[6] | ZHAO Zhenxia, XU Feng, LI Zhong. Gas separation properties of zeolitic imidazolate framework-8 membranes prepared by secondary synthesis [J]. CIESC Journal, 2014, 65(5): 1673-1679. |
[7] | LI Chengzhao, WU Kejing, QIN Wei, FEI Weiyang. Simulation of separation in continuous annular chromatography [J]. CIESC Journal, 2013, 64(2): 568-573. |
[8] | CHEN Juan,LU Xiaofeng,HU Qing,GUO Qiang. Numerical simulation of separation performance in cyclone with excentric vent pipe [J]. , 2011, 30(6): 1182-. |
[9] | SUN Baoquan1,XIA Ji1,Lü Wenjie 2,YANG Qiang 2. Liquid-solid micro hydrocyclone separation technology in removing catalyst particle from water [J]. , 2011, 30(10): 2173-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||