CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4587-4599.DOI: 10.11949/0438-1157.20230993
• Separation engineering • Previous Articles Next Articles
Lei XING1,2,3(), Chunyu MIAO1, Minghu JIANG1,3(), Lixin ZHAO1,3, Xinya LI1,3
Received:
2023-09-21
Revised:
2023-11-11
Online:
2024-01-22
Published:
2023-11-25
Contact:
Minghu JIANG
邢雷1,2,3(), 苗春雨1, 蒋明虎1,3(), 赵立新1,3, 李新亚1,3
通讯作者:
蒋明虎
作者简介:
邢雷(1990—),男,博士,副教授,Nepuxinglei@163.com
基金资助:
CLC Number:
Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of multi-stage spiral separator[J]. CIESC Journal, 2023, 74(11): 4587-4599.
邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 多级螺旋分离器结构优化设计与性能分析[J]. 化工学报, 2023, 74(11): 4587-4599.
Add to citation manager EndNote|Ris|BibTeX
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
D1/mm | 6 | L1/mm | 8 |
D2/mm | 8 | L2/mm | 30 |
D3/mm | 12 | L3/mm | 8 |
D4/mm | 22 | L4/mm | 25 |
D5/mm | 10 | L5/mm | 25 |
D6/mm | 6 | L6/mm | 50 |
D7/mm | 8 | L7/mm | 200 |
D8/mm | 22 | L8/mm | 200 |
D9/mm | 25 | L9/mm | 100 |
R1/mm | 10 |
Table 1 Structural parameters of multi-stage spiral separator
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
D1/mm | 6 | L1/mm | 8 |
D2/mm | 8 | L2/mm | 30 |
D3/mm | 12 | L3/mm | 8 |
D4/mm | 22 | L4/mm | 25 |
D5/mm | 10 | L5/mm | 25 |
D6/mm | 6 | L6/mm | 50 |
D7/mm | 8 | L7/mm | 200 |
D8/mm | 22 | L8/mm | 200 |
D9/mm | 25 | L9/mm | 100 |
R1/mm | 10 |
因素 | 水平 | ||
---|---|---|---|
高(+1) | 低(-1) | 中心点(0) | |
油相体积分数x1/% | 9 | 1 | 5 |
一二级间距x2/mm | 300 | 100 | 200 |
二三级间距x3/mm | 300 | 100 | 200 |
Table 2 Factors and levels design
因素 | 水平 | ||
---|---|---|---|
高(+1) | 低(-1) | 中心点(0) | |
油相体积分数x1/% | 9 | 1 | 5 |
一二级间距x2/mm | 300 | 100 | 200 |
二三级间距x3/mm | 300 | 100 | 200 |
实验序号 | x1/% | x2/mm | x3/mm | E/% |
---|---|---|---|---|
1 | 5 | 200 | 200 | 91.0 |
2 | 9 | 100 | 200 | 81.1 |
3 | 5 | 300 | 300 | 90.9 |
4 | 1 | 100 | 200 | 97.1 |
5 | 9 | 200 | 300 | 81.1 |
6 | 1 | 300 | 200 | 97.9 |
7 | 5 | 300 | 100 | 90.1 |
8 | 5 | 100 | 100 | 90.2 |
9 | 5 | 200 | 200 | 91.0 |
10 | 5 | 100 | 300 | 90.5 |
11 | 9 | 300 | 200 | 80.8 |
12 | 1 | 200 | 300 | 97.9 |
13 | 5 | 200 | 200 | 91.0 |
14 | 9 | 200 | 100 | 81.3 |
15 | 1 | 200 | 100 | 96.9 |
16 | 5 | 200 | 200 | 91.0 |
17 | 5 | 200 | 200 | 91.0 |
Table 3 Design and results of box-Behnken design
实验序号 | x1/% | x2/mm | x3/mm | E/% |
---|---|---|---|---|
1 | 5 | 200 | 200 | 91.0 |
2 | 9 | 100 | 200 | 81.1 |
3 | 5 | 300 | 300 | 90.9 |
4 | 1 | 100 | 200 | 97.1 |
5 | 9 | 200 | 300 | 81.1 |
6 | 1 | 300 | 200 | 97.9 |
7 | 5 | 300 | 100 | 90.1 |
8 | 5 | 100 | 100 | 90.2 |
9 | 5 | 200 | 200 | 91.0 |
10 | 5 | 100 | 300 | 90.5 |
11 | 9 | 300 | 200 | 80.8 |
12 | 1 | 200 | 300 | 97.9 |
13 | 5 | 200 | 200 | 91.0 |
14 | 9 | 200 | 100 | 81.3 |
15 | 1 | 200 | 100 | 96.9 |
16 | 5 | 200 | 200 | 91.0 |
17 | 5 | 200 | 200 | 91.0 |
类型 | 离差平方和 | 自由度 | 均方 | F值 | P |
---|---|---|---|---|---|
模型 | 547.58 | 9 | 60.84 | 5495.48 | <0.0001 |
x1 | 536.28 | 1 | 536.28 | 48438.31 | <0.0001 |
x2 | 0.0800 | 1 | 0.0800 | 7.23 | 0.0312 |
x3 | 0.4512 | 1 | 0.4512 | 40.76 | 0.0004 |
x1x2 | 0.3025 | 1 | 0.3025 | 27.32 | 0.0012 |
x1x3 | 0.3600 | 1 | 0.3600 | 32.52 | 0.0007 |
x2x3 | 0.0625 | 1 | 0.0625 | 5.65 | 0.0492 |
x1² | 8.85 | 1 | 8.85 | 799.59 | <0.0001 |
x2² | 0.4447 | 1 | 0.4447 | 40.17 | 0.0004 |
x3² | 0.2632 | 1 | 0.2632 | 23.77 | 0.0018 |
残差 | 0.0775 | 7 | 0.0111 | — | — |
失拟项 | 0.0775 | 3 | 0.0258 | — | — |
纯误差 | 0 | 4 | 0 | — | — |
Table 4 The model results of variance analysis
类型 | 离差平方和 | 自由度 | 均方 | F值 | P |
---|---|---|---|---|---|
模型 | 547.58 | 9 | 60.84 | 5495.48 | <0.0001 |
x1 | 536.28 | 1 | 536.28 | 48438.31 | <0.0001 |
x2 | 0.0800 | 1 | 0.0800 | 7.23 | 0.0312 |
x3 | 0.4512 | 1 | 0.4512 | 40.76 | 0.0004 |
x1x2 | 0.3025 | 1 | 0.3025 | 27.32 | 0.0012 |
x1x3 | 0.3600 | 1 | 0.3600 | 32.52 | 0.0007 |
x2x3 | 0.0625 | 1 | 0.0625 | 5.65 | 0.0492 |
x1² | 8.85 | 1 | 8.85 | 799.59 | <0.0001 |
x2² | 0.4447 | 1 | 0.4447 | 40.17 | 0.0004 |
x3² | 0.2632 | 1 | 0.2632 | 23.77 | 0.0018 |
残差 | 0.0775 | 7 | 0.0111 | — | — |
失拟项 | 0.0775 | 3 | 0.0258 | — | — |
纯误差 | 0 | 4 | 0 | — | — |
统计项目 | 数值 | 统计项目 | 数值 |
---|---|---|---|
标准偏差 | 0.1052 | R² | 0.999 |
均值 | 90.05 | adjusted R² | 0.999 |
C.V. | 9.69% | predicted R² | 0.997 |
adeq precision | 212.66 |
Table 5 The model results of statistic analysis
统计项目 | 数值 | 统计项目 | 数值 |
---|---|---|---|
标准偏差 | 0.1052 | R² | 0.999 |
均值 | 90.05 | adjusted R² | 0.999 |
C.V. | 9.69% | predicted R² | 0.997 |
adeq precision | 212.66 |
1 | Huang S T, He X, Chen J Q, et al. Study on the performance of an electric-field-enhanced oil-water separator in treating heavy oil with high water cut[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1516. |
2 | 张爽, 赵立新, 刘洋, 等. 脱气除油旋流系统流场分布及分离特性[J]. 化工进展, 2022, 41(1): 75-85. |
Zhang S, Zhao L X, Liu Y, et al. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85. | |
3 | 宋民航, 赵立新, 徐保蕊, 等. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603. |
Song M H, Zhao L X, Xu B R, et al. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. | |
4 | 白春禄, 王春升, 陈家庆, 等. 油井采出液预分水用轴向水力旋流器的实验研究[J]. 化工进展, 2020, 39(5): 1649-1656. |
Bai C L, Wang C S, Chen J Q, et al. Experimental study of axial hydrocyclone for pre-dehydration from wellstream[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1649-1656. | |
5 | 王德民, 王研, 张蕾蕾, 等. 同井注采配套工艺技术及应用效果[J]. 中国石油大学学报(自然科学版), 2023, 47(2): 64-72. |
Wang D M, Wang Y, Zhang L L, et al. Matching technology and application effect of injection-production in the same well[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(2): 64-72. | |
6 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
Liu H, Gao Y, Pei X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
7 | Zhao C W, Sun H Y, Li Z L. Structural optimization of downhole oil-water separator[J]. Journal of Petroleum Science and Engineering, 2017, 148: 115-126. |
8 | 邢雷, 李金煜, 蒋明虎, 等. 水力聚结器内油滴聚结特性及运动行为分析[J]. 石油机械, 2022, 50(8): 81-88. |
Xing L, Li J Y, Jiang M H, et al. Analysis on coalescence characteristics and migration behaviors of oil droplet in hydraulic coalescer[J]. China Petroleum Machinery, 2022, 50(8): 81-88. | |
9 | Shi P, Gou Y X, Li J, et al. Recycling of crude oil from oily wastewater via a novel hydrogel coalescer[J]. Fuel, 2022, 313: 123040. |
10 | Je Y W, Kim Y J, Kim Y J. The prediction of separation performance of an in-line axial oil-water separator using machine learning and CFD[J]. Processes, 2022, 10(2): 375. |
11 | 邢雷, 李金煜, 赵立新, 等. 基于响应面法的井下旋流分离器结构优化[J]. 中国机械工程, 2021, 32(15): 1818-1826. |
Xing L, Li J Y, Zhao L X, et al. Structural optimization of downhole hydrocyclones based on response surface methodology[J]. China Mechanical Engineering, 2021, 32(15): 1818-1826. | |
12 | Zhang J L, Peng K M, Xu Z K, et al. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes[J]. Advances in Colloid and Interface Science, 2023, 319: 102971. |
13 | Xing L, Guan S, Gao Y, et al. Measurement of a three-dimensional rotating flow field and analysis of the internal oil droplet Migration[J]. Energies 2023, 16(13): 5094. |
14 | 刘冰, 吴震, 高群, 等. 采出液温度对油水旋流分离器内流场及分离性能的影响[J]. 石油炼制与化工, 2021, 52(12): 64-71. |
Liu B, Wu Z, Gao Q, et al. Influence of produced liquid temperature on flow field and separation performance of hydrocyclone for oil-water separation[J]. Petroleum Processing and Petrochemicals, 2021, 52(12): 64-71. | |
15 | 王志杰, 李枫, 赵立新. 含聚浓度对旋流器性能影响的数值模拟与试验[J]. 化工进展, 2019, 38(12): 5287-5296. |
Wang Z J, Li F, Zhao L X. Numerical simulation and experimental study on the effect of polymer concentration on hydrocyclone performance[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5287-5296. | |
16 | 李新亚, 邢雷, 蒋明虎, 等. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
Li X Y, Xing L, Jiang M H, et al. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection[J]. CIESC Journal, 2023, 74(3): 1134-1144. | |
17 | Zhan M, Cheng X P, Yang W Y, et al. Numerical investigation on the swirler parameters for an axial liquid-liquid hydrocyclone[J]. IOP Conference Series: Earth and Environmental Science, 2021, 675(1): 012210. |
18 | 赵传伟, 李增亮, 邓良驹, 等. 井下双级串联式油水分离器工作特性研究[J]. 机械工程学报, 2014, 50(18): 177-185. |
Zhao C W, Li Z L, Deng L J, et al. Research on operating characteristic of downhole dual-stage tandem oil-water separator[J]. Journal of Mechanical Engineering, 2014, 50(18): 177-185. | |
19 | 敖兴友, 刘秀林, 康大地, 等. 基于CFD的水力旋流器并联公共液斗结构研究[J]. 齐齐哈尔大学学报(自然科学版), 2022, 38(2): 11-14. |
Ao X Y, Liu X L, Kang D D, et al. Study on flow rate of parallel common liquid bucket of hydrocyclone based on CFD[J]. Journal of Qiqihar University(Natural Science Edition), 2022, 38(2): 11-14. | |
20 | Xing L, Li J Y, Jiang M H, et al. Flow field analysis and performance evaluation of a hydrocyclone coalescer[J]. Separation Science and Technology, 2022, 57(18): 3035-3052. |
21 | 张蓓蓓, 刘影, 李秀媛. 基于正交试验方法的两级串联水力旋流器操作参数优化[J]. 化工机械, 2022, 49(2): 210-217. |
Zhang B B, Liu Y, Li X Y. Optimization of operating parameters for two-stage series hydrocyclones based on orthogonal experimental method[J]. Chemical Engineering & Machinery, 2022, 49(2): 210-217. | |
22 | 邢雷, 张勇, 蒋明虎, 等. 轴入式两级串联旋流器流场分析与性能评估[J]. 中国机械工程, 2018, 29(16): 1927-1935. |
Xing L, Zhang Y, Jiang M H, et al. Flow filed analysis and performance evaluation on axis-in dual-stage tandem hydrocyclones[J]. China Mechanical Engineering, 2018, 29(16): 1927-1935. | |
23 | 龚程. 分散相相互作用下液-液水力旋流分离特性[D]. 武汉: 武汉工程大学, 2015. |
Gong C. The Separating characteristics of liquid-liquid hydrocyclone with the interaction of the dispersion phase[D]. Wuhan: Wuhan Institute of Technology, 2015. | |
24 | 韩云蕊. 水中油滴碰壁铺展与剪切运动演化机理研究[D]. 青岛: 中国石油大学(华东), 2019. |
Han Y R. Investigation on the evolution mechanism of oil drop spreading and shear movement on solid surface underwater[D]. Qingdao: China University of Petroleum, 2019. | |
25 | 孙立强, 胡月, 王迪, 等. RSM与LES模拟旋风分离器流场动态特性的对比分析[J]. 化学反应工程与工艺, 2018, 34(4): 289-296. |
Sun L Q, Hu Y, Wang D, et al. Comparative analysis of flow field dynamic characteristics of cyclone separators by RSM and LES simulation[J]. Chemical Reaction Engineering and Technology, 2018, 34(4): 289-296. | |
26 | 琚选择, 李自力, 孙卓辉, 等. 论液-液水力旋流器的CFD方法[J]. 石油矿场机械, 2008, 37(7): 14-19. |
Ju X Z, Li Z L, Sun Z H, et al. Discuss of CFD method of liquid-liquid hydrocyclone[J]. Oil Field Equipment, 2008, 37(7): 14-19. | |
27 | 王瑶, 刘敏, 张成富, 等. 一种旋流+膜联合油水分离器流场数值模拟[J]. 中国海洋平台, 2023, 38(4): 104-108. |
Wang Y, Liu M, Zhang C F, et al. Numerical simulation of flow field in swirl+membrane combined oil-water separator[J]. China Offshore Platform, 2023, 38(4): 104-108. | |
28 | Auysakul J, Booranawong A, Vittayaphadung N, et al. An optimized design of the soft bellow actuator based on the box-Behnken response surface design[J]. Actuators, 2023, 12(7): 300. |
29 | 杨金金, 王者超, 乔丽苹, 等. 粗糙裂隙内涡旋结构演化特征及影响因素分析[J]. 东北大学学报(自然科学版), 2023, 44(5): 697-704. |
Yang J J, Wang Z C, Qiao L P, et al. Analysis of evolution characteristics and influencing factors of vortex structure in rough-walled fracture[J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 697-704. | |
30 | 袁惠新, 方勇, 付双成, 等. 旋流器的微米级颗粒分级性能分析[J]. 化工进展, 2017, 36(12): 4371-4377. |
Yuan H X, Fang Y, Fu S C, et al. Analysis of the classification performance of micron particles with hydrocyclones[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4371-4377. | |
31 | 任向海, 彭振华, 丁雯, 等. 基于CFD-PBM模型的井下油水旋流分离器结构优选[J]. 石油机械, 2023, 51(6): 66-73. |
Ren X H, Peng Z H, Ding W, et al. Structure optimization of downhole oil-water hydrocyclone based on CFD-PBM model. China Petroleum Machinery, 2023, 51(6): 66-73. | |
32 | 许敏. 水力旋流器内部流场数值模拟及分离性能分析[J]. 石油矿场机械, 2012, 41(3): 21-24. |
Xu M. Numerical simulation of inner flow field in hydrocyclone and performance analysis[J]. Oil Field Equipment, 2012, 41(3): 21-24. | |
33 | 徐保蕊, 蒋明虎, 刘书孟, 等. 分流比对旋流器油水分离性能影响的模拟研究[J]. 化工机械, 2015, 42(3): 399-403. |
Xu B R, Jiang M H, Liu S M, et al. Simulation study of split ratio effect on oil-water separation performance of hydrocyclones[J]. Chemical Engineering & Machinery, 2015, 42(3): 399-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||