CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 183-194.DOI: 10.11949/0438-1157.20240249
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Senyang CHEN1,2(), Puhang JIN1(
), Zhiming TAN2, Gongnan XIE1,2
Received:
2024-03-04
Revised:
2024-05-22
Online:
2024-12-17
Published:
2024-12-25
Contact:
Puhang JIN
陈森洋1,2(), 靳蒲航1(
), 谭志明2, 谢公南1,2
通讯作者:
靳蒲航
作者简介:
陈森洋(2000—),女,硕士研究生,chensenyang@mail.nwpu.edu.cn
基金资助:
CLC Number:
Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC[J]. CIESC Journal, 2024, 75(S1): 183-194.
陈森洋, 靳蒲航, 谭志明, 谢公南. 质子交换膜燃料电池中蛇形流道液滴运动数值仿真研究[J]. 化工学报, 2024, 75(S1): 183-194.
网格数量/个 | 排出时间/s |
---|---|
10×104 | 0.0178 |
22×104 | 0.0210 |
41×104 | 0.0205 |
Table 1 Statistics of droplet discharge time in models with different units
网格数量/个 | 排出时间/s |
---|---|
10×104 | 0.0178 |
22×104 | 0.0210 |
41×104 | 0.0205 |
库仑数 | 排出时间/s |
---|---|
1 | 0.0208 |
2 | 0.0210 |
3 | 0.0211 |
Table 2 Droplet discharge time in models with different Courant numbers
库仑数 | 排出时间/s |
---|---|
1 | 0.0208 |
2 | 0.0210 |
3 | 0.0211 |
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
1 | A | 6 | 0.6 | 内侧 | 0.0796 |
2 | A | 6 | 0.6 | 外侧 | 0.0613 |
3 | A | 6 | 0.7 | 内侧 | 0.0311 |
4 | A | 6 | 0.7 | 外侧 | 0.0290 |
5 | A | 6 | 0.8 | 内侧 | 0.0215 |
6 | A | 6 | 0.8 | 外侧 | 0.0237 |
7 | B | 6 | 0.6 | 内侧 | 0.0815 |
8 | B | 6 | 0.6 | 外侧 | 0.0683 |
9 | B | 6 | 0.7 | 内侧 | 0.0233 |
10 | B | 6 | 0.7 | 外侧 | 0.0295 |
11 | B | 6 | 0.8 | 内侧 | 0.0222 |
12 | B | 6 | 0.8 | 外侧 | 0.0210 |
Table 3 Single droplet simulation conditions and discharge time
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
1 | A | 6 | 0.6 | 内侧 | 0.0796 |
2 | A | 6 | 0.6 | 外侧 | 0.0613 |
3 | A | 6 | 0.7 | 内侧 | 0.0311 |
4 | A | 6 | 0.7 | 外侧 | 0.0290 |
5 | A | 6 | 0.8 | 内侧 | 0.0215 |
6 | A | 6 | 0.8 | 外侧 | 0.0237 |
7 | B | 6 | 0.6 | 内侧 | 0.0815 |
8 | B | 6 | 0.6 | 外侧 | 0.0683 |
9 | B | 6 | 0.7 | 内侧 | 0.0233 |
10 | B | 6 | 0.7 | 外侧 | 0.0295 |
11 | B | 6 | 0.8 | 内侧 | 0.0222 |
12 | B | 6 | 0.8 | 外侧 | 0.0210 |
X轴位置/mm | 文献[ | 本文模型运动时间/ms |
---|---|---|
0 | 1.000 | 1.000 |
4.0 | 2.290 | 2.289 |
6.0 | 3.859 | 3.664 |
10.0 | 7.985 | 7.546 |
12.0 | 10.403 | 9.940 |
Table 4 Comparison of droplet movement time and position between this work and the Ref.[25]
X轴位置/mm | 文献[ | 本文模型运动时间/ms |
---|---|---|
0 | 1.000 | 1.000 |
4.0 | 2.290 | 2.289 |
6.0 | 3.859 | 3.664 |
10.0 | 7.985 | 7.546 |
12.0 | 10.403 | 9.940 |
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
13 | A | 6 | 0.4 | 均位于内侧 | 0.1287 |
14 | A | 6 | 0.4 | 均位于外侧 | 停驻 |
15 | A | 6 | 0.4 | 内侧-外侧 | 部分停驻 |
16 | B | 6 | 0.4 | 均位于内侧 | 0.0722 |
17 | B | 6 | 0.4 | 均位于外侧 | 0.0506 |
18 | B | 6 | 0.4 | 内侧-外侧 | 0.1057 |
Table 5 Double droplets simulation conditions and discharge time
组别 | 模型 | 入口流速/(m/s) | 液滴直径/mm | 初始位置 | 排出时间/s |
---|---|---|---|---|---|
13 | A | 6 | 0.4 | 均位于内侧 | 0.1287 |
14 | A | 6 | 0.4 | 均位于外侧 | 停驻 |
15 | A | 6 | 0.4 | 内侧-外侧 | 部分停驻 |
16 | B | 6 | 0.4 | 均位于内侧 | 0.0722 |
17 | B | 6 | 0.4 | 均位于外侧 | 0.0506 |
18 | B | 6 | 0.4 | 内侧-外侧 | 0.1057 |
1 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
2 | Jewell J, McCollum D, Emmerling J, et al. Limited emission reductions from fuel subsidy removal except in energy-exporting regions[J]. Nature, 2018, 554(7691): 229-233. |
3 | Staffell I, Scamman D, Velazquez Abad A, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12(2): 463-491. |
4 | Konno N, Mizuno S, Nakaji H, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1): 123-129. |
5 | Agyekum E B, Ampah J D, Wilberforce T, et al. Research progress, trends, and current state of development on PEMFC: new insights from a bibliometric analysis and characteristics of two decades of research output[J]. Membranes, 2022, 12(11): 1103. |
6 | Athanasaki G, Jayakumar A, Kannan A M. Gas diffusion layers for PEM fuel cells: materials, properties and manufacturing: a review[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2294-2313. |
7 | Liu Q S, Lan F C, Chen J Q, et al. A review of proton exchange membrane fuel cell water management: membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: 230723. |
8 | Claude F, Ramadan H S, Becherif M, et al. Heat management methodology for enhanced global efficiency in hybrid electric vehicles[J]. Case Studies in Thermal Engineering, 2017, 10: 325-334. |
9 | Ozden E, Tari I. Proton exchange membrane fuel cell degradation: a parametric analysis using computational fluid dynamics[J]. Journal of Power Sources, 2016, 304: 64-73. |
10 | Ozden A, Shahgaldi S, Li X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells: with a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
11 | Chakraborty S, Elangovan D, Palaniswamy K, et al. A review on the numerical studies on the performance of proton exchange membrane fuel cell (PEMFC) flow channel designs for automotive applications[J]. Energies, 2022, 15(24): 9520. |
12 | Depcik C, Cassady T, Collicott B, et al. Comparison of lithium ion batteries, hydrogen fueled combustion engines, and a hydrogen fuel cell in powering a small unmanned aerial vehicle[J]. Energy Conversion and Management, 2020, 207: 112514. |
13 | Wang Y, Seo B, Wang B W, et al. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology[J]. Energy and AI, 2020, 1: 100014. |
14 | Budak Y, Devrim Y. Investigation of micro-combined heat and power application of PEM fuel cell systems[J]. Energy Conversion and Management, 2018, 160: 486-494. |
15 | Schröder A, Wippermann K, Arlt T, et al. Neutron radiography and current distribution measurements for studying cathode flow field properties of direct methanol fuel cells[J]. International Journal of Energy Research, 2014, 38(7): 926-943. |
16 | Ous T, Arcoumanis C. Visualisation of water droplets during the operation of PEM fuel cells[J]. Journal of Power Sources, 2007, 173(1): 137-148. |
17 | Bozorgnezhad A, Shams M, Kanani H, et al. Two-phase flow and droplet behavior in microchannels of PEM fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19164-19181. |
18 | Bozorgnezhad A, Shams M, Kanani H, et al. Experimental investigation on dispersion of water droplets in the single-serpentine channel of a PEM fuel cell[J]. Journal of Dispersion Science and Technology, 2015, 36(8): 1190-1197. |
19 | Baek S M, Yu S H, Nam J H, et al. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs[J]. Applied Thermal Engineering, 2011, 31(8/9): 1427-1434. |
20 | Rahimi-Esbo M, Ranjbar A A, Ramiar A, et al. Improving PEM fuel cell performance and effective water removal by using a novel gas flow field[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3023-3037. |
21 | Li W K, Zhang Q L, Wang C, et al. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J]. Applied Energy, 2017, 195: 278-288. |
22 | Fan L H, Niu Z Q, Zhang G B, et al. Optimization design of the cathode flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 171: 1813-1821. |
23 | Zhu X, Sui P C, Djilali N. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel[J]. Journal of Power Sources, 2008, 181(1): 101-115. |
24 | Liu H C, Tan J, Cheng L S, et al. Enhanced water removal performance of a slope turn in the serpentine flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 227-235. |
25 | Lei H, Huang H Z, Li C, et al. Numerical simulation of water droplet transport characteristics in cathode channel of proton exchange membrane fuel cell with tapered slope structures[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29331-29344. |
26 | Liao S X, Qiu D K, Yi P Y, et al. Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells[J]. Energy, 2022, 261: 125235. |
27 | Zhang X Q, Yang J P, Ma X, et al. Numerical investigation of water dynamics in a novel wettability gradient anode flow channel for proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2020, 44(13): 10282-10294. |
28 | 李梦佳. 碳纸的疏水改性及其性能研究[D]. 天津: 天津工业大学, 2021. |
Li M J. Hydrophobic modification of carbon paper and its properties[D]. Tianjin: Tianjin Polytechnic University, 2021. | |
29 | 王浩, 钟伟, 徐东晓, 等. 管道用超疏水PTFE/PPS复合涂层的耐久性分析[J]. 塑料科技, 2021, 49(7): 56-60. |
Wang H, Zhong W, Xu D X, et al. Durability analysis of superhydrophobic PTFE/PPS composite coating for pipeline[J]. Plastics Science and Technology, 2021, 49(7): 56-60. | |
30 | 王睿哲. PTFE基复合涂层织构化表面的疏水性及耐磨性能[D]. 北京: 中国地质大学(北京), 2020. |
Wang R Z. Hydrophobicity and wear resistance of textured surface of PTFE based composite coating[D]. Beijing: China University of Geosciences, 2020. |
[1] | Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC [J]. CIESC Journal, 2024, 75(3): 974-986. |
[2] | Li ZHANG, Wenrong SHI, Qi LIANG, Yang LIU, Zhongfeng XIA, Zhen GUO. Effects of hydrogen intake pressure on performance of air-cooled PEMFC [J]. CIESC Journal, 2023, 74(11): 4730-4738. |
[3] | Ru WANG, Yongchao SHEN, Dong WEI, Qian GUO. Analysis of PEMFC water management status based on DC internal resistance and AC impedance characteristics [J]. CIESC Journal, 2020, 71(7): 3247-3257. |
[4] | MA Zhiwen, ZENG Yida, LI Lun. Modeling and experimental verification of air supply system in large power PEMFC [J]. CIESC Journal, 2016, 67(5): 2109-2116. |
[5] | CAI Guangxu1,2,GUO Jianwei2,WANG Jia1. Application of electrochemical impedance spectroscopy to study of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 56-63. |
[6] | BU Yongdong, SHEN Yinqi, DU Xiaoze, YANG Lijun, YANG Yongping. Hydrogen production by steam reforming of methanol in reactor with comby micro-channel network [J]. CIESC Journal, 2013, 64(6): 2177-2185. |
[7] | WANG Feijie, YANG Daijun, ZHANG Hao, MA Jianxin. Response features of a 1.5 kW proton exchange membrane fuel cell stack for dynamic cycle [J]. CIESC Journal, 2013, 64(4): 1380-1386. |
[8] | LI Ying, ZHOU Qinwen, ZHOU Xiaohui. Numerical analysis on effect of diffusion layer characteristics on water flooding in PEMFC cathode [J]. CIESC Journal, 2013, 64(4): 1424-1430. |
[9] | WANG Xiaoshan1,ZHANG Jinfang1,ZHANG Caizhi2,HAN Ming2. Experiment of pulsation hydrogen passing into PEMFC [J]. CIESC Journal, 2012, 63(1): 237-243. |
[10] | . Liquid water transport behaviors in micro PEMFC gas channels with rough gas diffusion layer surface [J]. , 2011, 62(3): 643-651. |
[11] | DAI Lei, LI Ming, HU Mingruo. Hydrogen production system for PEMFC using natural gas steam reforming [J]. CIESC Journal, 2009, 60(S1): 90-94. |
[12] | MA Haipeng, ZHANG Huamin, HU Jun, CAI Yinghua. Effects of humidification temperature and gas velocity on liquid water distribution and removal in cathode channel of PEMFC [J]. CIESC Journal, 2007, 58(9): 2357-2362. |
[13] | ZHANG ,Shengsheng, YU ,Hongmei, ZHU ,Hong a , HOU ,Junbo, ,YI ,Baolian, ,MING ,Pingwen. Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells [J]. , 2006, 14(6): 802-805. |
[14] |
WANG Ying;LI Xiangyi;LEE Wonyong;KE Jian.
Three-dimensional modeling and experimental validation of air-breathing PEM fuel cell [J]. , 2006, 57(1): 115-121. |
[15] | MA Zifeng, YUAN Xiaozi, HE Qinggang. EFFECT OF SOLID POLYMER ELECTROLYTE ON ELECTRO-GENERATIVE HYDROGENATION BEHAVIOR OF PEMFC REACTOR [J]. CIESC Journal, 2004, 55(5): 833-836. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||