CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 974-986.DOI: 10.11949/0438-1157.20231344
• Energy and environmental engineering • Previous Articles Next Articles
Yaowen TAN1,2(), Panxing JIANG1,2, Qing DU1,2, Wanqiu YU1,2, Xiaofei WEN3, Zhigang ZHAN1,2()
Received:
2023-12-18
Revised:
2024-01-15
Online:
2024-05-11
Published:
2024-03-25
Contact:
Zhigang ZHAN
谭耀文1,2(), 姜攀星1,2, 杜青1,2, 余婉秋1,2, 温小飞3, 詹志刚1,2()
通讯作者:
詹志刚
作者简介:
谭耀文(1998—),男,硕士研究生,18271236764@163.com
基金资助:
CLC Number:
Yaowen TAN, Panxing JIANG, Qing DU, Wanqiu YU, Xiaofei WEN, Zhigang ZHAN. Numerical study of the effects of operating voltage on the degradation of membrane electrodes of PEMFC[J]. CIESC Journal, 2024, 75(3): 974-986.
谭耀文, 姜攀星, 杜青, 余婉秋, 温小飞, 詹志刚. 工作电压对PEMFC膜电极衰退影响模拟研究[J]. 化工学报, 2024, 75(3): 974-986.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
Table 1 Structural parameters
参数 | 数值/ |
---|---|
电池总长/宽/高 | 60/2/2.407 |
流道深度 | 0.5 |
流道宽度 | 0.8 |
岸宽 | 0.6 |
阴/阳极GDL厚度 | 0.16 |
阴/阳极MPL厚度 | 0.03 |
阴/阳极CL厚度 | 0.009/0.006 |
质子交换膜厚度 | 0.012 |
参数 | 数值 |
---|---|
温度/K | 348.15 |
阴/阳极出口背压/kPa | 150/150 |
阴/阳极进口加湿度/% | 70/50 |
阴/阳极化学计量比 | 2/2 |
Table 2 Operating conditions
参数 | 数值 |
---|---|
温度/K | 348.15 |
阴/阳极出口背压/kPa | 150/150 |
阴/阳极进口加湿度/% | 70/50 |
阴/阳极化学计量比 | 2/2 |
参数 | 数值 |
---|---|
GDL/MPL/CL接触角/(°) | 130/140/120 |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 |
GDL/MPL/CL/PEM密度/(kg/m3) | 2000/2000/1350/1980 |
GDL/MPL/CL/PEM比热容/(J/(kg·K)) | 1000/1000/680/1090 |
GDL/MPL/CL渗透率(厚度方向)/m2 | 6.5×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL渗透率(平面方向)/m2 | 1.9×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL/PEM电导率(厚度方向)/(S/m) | 358/358/13514/0 |
GDL/MPL/CL/PEM电导率(平面方向)/(S/m) | 27500/358/13514/0 |
GDL/MPL/CL/PEM热导率(厚度方向)/ (W/(m·K)) | 0.83/0.83/2.74/0.2 |
GDL/MPL/CL/PEM热导率(平面方向)/ (W/(m·K)) | 8.33/0.83/2.74/0.2 |
阴/阳极交换电流密度/(A/m3) | 900/5×108 |
阴/阳极电荷传递系数 | 0.65/0.5 |
Table 3 Physical parameters[30] and electrochemical parameters[20]
参数 | 数值 |
---|---|
GDL/MPL/CL接触角/(°) | 130/140/120 |
GDL/MPL/CL孔隙率 | 0.7/0.6/0.5 |
GDL/MPL/CL/PEM密度/(kg/m3) | 2000/2000/1350/1980 |
GDL/MPL/CL/PEM比热容/(J/(kg·K)) | 1000/1000/680/1090 |
GDL/MPL/CL渗透率(厚度方向)/m2 | 6.5×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL渗透率(平面方向)/m2 | 1.9×10-12/3.4×10-12/2×10-15 |
GDL/MPL/CL/PEM电导率(厚度方向)/(S/m) | 358/358/13514/0 |
GDL/MPL/CL/PEM电导率(平面方向)/(S/m) | 27500/358/13514/0 |
GDL/MPL/CL/PEM热导率(厚度方向)/ (W/(m·K)) | 0.83/0.83/2.74/0.2 |
GDL/MPL/CL/PEM热导率(平面方向)/ (W/(m·K)) | 8.33/0.83/2.74/0.2 |
阴/阳极交换电流密度/(A/m3) | 900/5×108 |
阴/阳极电荷传递系数 | 0.65/0.5 |
工况 | 网格数量/个 | 电流密度/(mA/cm2) | 电压/V | 计算时间/h |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
Table 4 Grid independence test
工况 | 网格数量/个 | 电流密度/(mA/cm2) | 电压/V | 计算时间/h |
---|---|---|---|---|
Case1 | 196964 | 800 | 0.731275 | 5.1 |
Case2 | 261492 | 800 | 0.731949 | 7.3 |
Case3 | 307831 | 800 | 0.732615 | 8.6 |
Case4 | 363158 | 800 | 0.732826 | 10.4 |
Case5 | 431285 | 800 | 0.732910 | 12.8 |
1 | Meyer Q, Zeng Y C, Zhao C. In situ and operando characterization of proton exchange membrane fuel cells[J]. Advanced Materials, 2019, 31(40): e1901900. |
2 | 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. |
Hou M, Shao Z G, Yu H M, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science & Technology Review, 2020, 38(1): 137-150. | |
3 | Nguyen H L, Han J, Nguyen X L, et al. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: main influencing parameters and testing protocols[J]. Energies, 2021, 14(13): 4048. |
4 | Okonkwo P C, Ige O O, Barhoumi E M, et al. Platinum degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: a review[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15850-15865. |
5 | Gittleman C S, Coms F, Lai Y. Membrane durability: physical and chemical degradation[M]// Modern Topics in Polymer Electrolyte Full Cell. Boston: Elsevier Inc., 2011: 15-88. |
6 | Hong K, Li S, Zhu K, et al. Effects of relative humidification on durability of membrane electrode assembly of proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2021, 168(6): 064507. |
7 | Chen H C, Zhao X, Zhang T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review[J]. Energy Conversion & Management, 2019, 182: 282-298. |
8 | 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. |
Wang C, Wang S B, Zhang J B, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. | |
9 | Ren P, Pei P C, Li Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
10 | Zhang Y L, Chen S G, Wang Y, et al. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. Journal of Power Sources, 2015, 273: 62-69. |
11 | Han M, Shul Y G, Lee H, et al. Accelerated testing of polymer electrolyte membranes under open-circuit voltage conditions for durable proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(52): 30787-30791. |
12 | Franck-Lacaze L, Bonnet C, Choi E, et al. Ageing of PEMFC’s due to operation at low current density: investigation of oxidative degradation[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10472-10481. |
13 | Kneer A, Wagner N, Sadeler C, et al. Effect of dwell time and scan rate during voltage cycling on catalyst degradation in PEM fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(10): F805-F812. |
14 | Kneer A, Wagner N. A semi-empirical catalyst degradation model based on voltage cycling under automotive operating conditions in PEM fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(2): F120-F127. |
15 | 罗马吉, 杨俊玮, 赵岩, 等. 不同衰退机理对PEMFC怠速工况性能衰退影响的模拟研究[J]. 太阳能学报, 2021, 42(3): 414-421. |
Luo M J, Yang J W, Zhao Y, et al. Simulation study on effect of different aging mechanisms on PEMFC performance degradation under idling condition[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 414-421. | |
16 | Kundu S, Fowler M W, Simon L C, et al. Degradation analysis and modeling of reinforced catalyst coated membranes operated under OCV conditions[J]. Journal of Power Sources, 2008, 183(2): 619-628. |
17 | Moein-Jahromi M, Kermani M J. Three-dimensional multiphase simulation and multi-objective optimization of PEM fuel cells degradation under automotive cyclic loads[J]. Energy Conversion and Management, 2021, 231: 113837. |
18 | Cullen D A, Neyerlin K C, Ahluwalia R K, et al. New roads and challenges for fuel cells in heavy-duty transportation[J]. Nature Energy, 2021, 6: 462-474. |
19 | Shao Y Y, Yin G P, Gao Y Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of Power Sources, 2007, 171(2): 558-566. |
20 | Fink C, Karpenko-Jereb L, Ashton S. Advanced CFD analysis of an air-cooled PEM fuel cell stack predicting the loss of performance with time[J]. Fuel Cells, 2016, 16(4): 490-503. |
21 | Pandy A, Yang Z W, Gummalla M, et al. A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell[J]. Journal of the Electrochemical Society, 2013, 160(9): F972-F979. |
22 | MacAuley N, Papadias D D, Fairweather J, et al. Carbon corrosion in PEM fuel cells and the development of accelerated stress tests[J]. Journal of the Electrochemical Society, 2018, 165(6): F3148-F3160. |
23 | Bi W, Fuller T F. Modeling of PEM fuel cell Pt/C catalyst degradation[J]. Journal of Power Sources, 2008, 178(1): 188-196. |
24 | Heyd D V, Harrington D A. Platinum oxide growth kinetics for cyclic voltammetry[J]. Journal of Electroanalytical Chemistry, 1992, 335(1/2): 19-31. |
25 | Darling R M, Meyers J P. Mathematical model of platinum movement in PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(1): A242. |
26 | Kregar A, Tavčar G, Kravos A, et al. Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells[J]. Applied Energy, 2020, 263: 114547. |
27 | Wong K H, Kjeang E. Mitigation of chemical membrane degradation in fuel cells: understanding the effect of cell voltage and iron ion redox cycle[J]. ChemSusChem, 2015, 8(6): 1072-1082. |
28 | Wong K H, Kjeang E. Macroscopic in-situ modeling of chemical membrane degradation in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2014, 161(9): F823-F832. |
29 | Singh R, Sui P C, Wong K H, et al. Modeling the effect of chemical membrane degradation on PEMFC performance[J]. Journal of the Electrochemical Society, 2018, 165(6): F3328-F3336. |
30 | Fink C, Gößling S, Karpenko-Jereb L, et al. CFD simulation of an industrial PEM fuel cell with local degradation effects[J]. Fuel Cells, 2020, 20(4): 431-452. |
31 | Chen H, Zhan Z G, Jiang P X, et al. Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA[J]. Applied Energy, 2022, 310: 118556. |
[1] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[2] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[3] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[4] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[5] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[6] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
[7] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[8] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[9] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[10] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[11] | Bidan ZHAO, Yiyang DAI, Junwu WANG, Yongmin ZHANG. CFD-DEM-IBM simulation on force characteristic on inclined-surface baffles in fluidized beds [J]. CIESC Journal, 2024, 75(1): 255-267. |
[12] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[13] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[14] | Junnan WANG, Chengxiang HE, Zhongdong WANG, Chunying ZHU, Youguang MA, Taotao FU. Numerical simulation of homogeneous mixing in T-junction micromixers [J]. CIESC Journal, 2024, 75(1): 242-254. |
[15] | Yao ZHOU, Xiaoping YANG, Yicheng NI, Jiping LIU, Jinjia WEI, Junjie YAN. Numerical simulation of two-phase steam ejector applied in novel loop heat pipe [J]. CIESC Journal, 2024, 75(1): 268-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||