CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1447-1462.DOI: 10.11949/0438-1157.20241052
• Reviews and monographs • Previous Articles Next Articles
Xian LIANG1,2,3(), Xiaoyan ZHANG1(
), Yijun WEI2, Yunfang ZHENG2, Quanhan GAO2, Mai XU1,2, Fengwu WANG1,2(
)
Received:
2024-09-23
Revised:
2024-10-29
Online:
2025-05-12
Published:
2025-04-25
Contact:
Xian LIANG, Fengwu WANG
梁铣1,2,3(), 张晓燕1(
), 魏亦军2, 郑云芳2, 高全涵2, 徐迈1,2, 王凤武1,2(
)
通讯作者:
梁铣,王凤武
作者简介:
梁铣(1985—),男,博士,副教授,lx226@ustc.edu.cn基金资助:
CLC Number:
Xian LIANG, Xiaoyan ZHANG, Yijun WEI, Yunfang ZHENG, Quanhan GAO, Mai XU, Fengwu WANG. Research progress on the durability of polyelectrolyte for alkaline membrane fuel cells[J]. CIESC Journal, 2025, 76(4): 1447-1462.
梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462.
聚合物 | 主链 | 离子交换基团 | 80℃耐碱性(电导保留率) | 文献 |
---|---|---|---|---|
MTCP-50 | ![]() | ![]() | 1 mol·L-1 KOH 8000 h (94.3%) | [ |
P(VCP10-TP90) | ![]() | ![]() | 1 mol·L-1 KOH 5000 h (93.8%) | [ |
NM-LPF-OH | ![]() | ![]() | 1 mol·L-1 KOH 4320 h (95℃, 100%) | [ |
PBPA-b-BPP | ![]() | ![]() | 2 mol·L-1 KOH 3750 h | [ |
qPTTP-7 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (86%) | [ |
Cr-QPPV-2.51 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (95%) | [ |
PBSU | ![]() | ![]() | 3 mol·L-1 KOH 2000 h (94.5%) | [ |
QPATP-40TDP | ![]() | ![]() | 6 mol·L-1 KOH 1000 h (93%) | [ |
PPTQ | ![]() | ![]() | 10 mol·L-1 1800 h (100%) | [ |
PTPFQ-I-85 | ![]() | ![]() | 10 mol·L-1 NaOH 1600 h (100%) | [ |
AAEM | ![]() | ![]() | 1 mol·L-1 KOH 720 h (95%) | [ |
BPNP | ![]() | ![]() | 1 mol·L-1 KOH 1000 h (98.5%) | [ |
Table 1 Alkali stability of some alkaline polyelectrolytes
聚合物 | 主链 | 离子交换基团 | 80℃耐碱性(电导保留率) | 文献 |
---|---|---|---|---|
MTCP-50 | ![]() | ![]() | 1 mol·L-1 KOH 8000 h (94.3%) | [ |
P(VCP10-TP90) | ![]() | ![]() | 1 mol·L-1 KOH 5000 h (93.8%) | [ |
NM-LPF-OH | ![]() | ![]() | 1 mol·L-1 KOH 4320 h (95℃, 100%) | [ |
PBPA-b-BPP | ![]() | ![]() | 2 mol·L-1 KOH 3750 h | [ |
qPTTP-7 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (86%) | [ |
Cr-QPPV-2.51 | ![]() | ![]() | 1 mol·L-1 KOH 3000 h (95%) | [ |
PBSU | ![]() | ![]() | 3 mol·L-1 KOH 2000 h (94.5%) | [ |
QPATP-40TDP | ![]() | ![]() | 6 mol·L-1 KOH 1000 h (93%) | [ |
PPTQ | ![]() | ![]() | 10 mol·L-1 1800 h (100%) | [ |
PTPFQ-I-85 | ![]() | ![]() | 10 mol·L-1 NaOH 1600 h (100%) | [ |
AAEM | ![]() | ![]() | 1 mol·L-1 KOH 720 h (95%) | [ |
BPNP | ![]() | ![]() | 1 mol·L-1 KOH 1000 h (98.5%) | [ |
1 | Sekar S, Aqueel Ahmed A T, Sim D H, et al. Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40317-40326. |
2 | Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200. |
3 | Hyun J, Kim H T. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2023, 16(12): 5633-5662. |
4 | Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818. |
5 | Ul Hassan N, Mandal M, Huang G, et al. Achieving high-performance and 2000 h stability in anion exchange membrane fuel cells by manipulating ionomer properties and electrode optimization[J]. Advanced Energy Materials, 2020, 10(40): 2001986. |
6 | Hu C, Kang H W, Jung S W, et al. Stabilizing the catalyst layer for durable and high performance alkaline membrane fuel cells and water electrolyzers[J]. ACS Central Science, 2024, 10(3): 603-614. |
7 | 万磊, 赖忆铭, 王保国. 离子交换膜界面结构对膜电极性能影响的研究进展[J]. 膜科学与技术, 2019, 39(4): 132-141, 147. |
Wan L, Lai Y M, Wang B G. Recent progress in patterning ion exchange membrane interface for membrane electrode assembly[J]. Membrane Science and Technology, 2019, 39(4): 132-141, 147. | |
8 | Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1690-1704. |
9 | Zhang J F, Zhu W K, Huang T, et al. Recent insights on catalyst layers for anion exchange membrane fuel cells[J]. Advanced Science, 2021, 8(15): 2100284. |
10 | Malek K, Eikerling M, Wang Q P, et al. Self-organization in catalyst layers of polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry C, 2007, 111(36): 13627-13634. |
11 | Abeleda J M A, Espiritu R. The status and prospects of hydrogen and fuel cell technology in the Philippines[J]. Energy Policy, 2022, 162: 112781. |
12 | Saebea D, Chaiburi C, Authayanun S. Model based evaluation of alkaline anion exchange membrane fuel cells with water management[J]. Chemical Engineering Journal, 2019, 374: 721-729. |
13 | Mustain W E, Chatenet M, Page M, et al. Durability challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2020, 13(9): 2805-2838. |
14 | Gottesfeld S, Dekel D R, Page M, et al. Anion exchange membrane fuel cells: current status and remaining challenges[J]. Journal of Power Sources, 2018, 375: 170-184. |
15 | Xue J D, Douglin J C, Yassin K, et al. High-temperature anion-exchange membrane fuel cells with balanced water management and enhanced stability[J]. Joule, 2024, 8(5): 1457-1477. |
16 | Ma X Q, Liu A D, Si J T, et al. Hydrophobicity regulation of hyperbranched poly(aryl piperidine) anion exchange membranes for fuel cells[J]. Macromolecules, 2024, 57(19): 9346-9354. |
17 | Ma X Q, Xiang Q, Yuan W, et al. Localized stacked hyper branched anion exchange membrane for fuel cell[J]. Journal of Membrane Science, 2024, 694: 122432. |
18 | Lu X L, Ma X Q, Yuan W, et al. Microcrystalline-induced physical-cross-linking toward a high performance hyper-branched anion exchange membrane[J]. Macromolecules, 2024, 57(4): 1744-1750. |
19 | 付凤艳, 邢广恩.碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52. |
Fu F Y, Xing G E. Progress of polymer-based anion exchange membrane for alkaline fuel cell application [J]. CIESC Journal, 2021, 72(S1): 42-52. | |
20 | Chen N J, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers[J]. Progress in Polymer Science, 2021, 113: 101345. |
21 | 杨正金, 左培培, 李圆圆, 等. 面向燃料电池和液流电池的高性能离子交换膜[J]. 膜科学与技术, 2021, 41(6): 162-171, 181. |
Yang Z J, Zuo P P, Li Y Y, et al. Advanced ion exchange membranes for fuel cells and aqueous flow batteries[J]. Membrane Science and Technology, 2021, 41(6): 162-171, 181. | |
22 | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
Zhang H M, Lu J Y, Wang S F. Research progress on molecular structure of anion exchange membrane for fuel cells[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. | |
23 | 袁伟, 曾玲平, 王建川, 等. 燃料电池阴离子交换膜高效离子传输通道构建进展[J]. 化工学报, 2019, 70(10): 3764-3775. |
Yuan W, Zeng L P, Wang J C, et al. Progress in construction of high efficient ion transport channels for anion exchange membranes fuel cell[J]. CIESC Journal, 2019, 70(10): 3764-3775. | |
24 | Arges C G, Ramani V. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(7): 2490-2495. |
25 | Xu F, Su Y, Lin B C. Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation[J]. Frontiers in Materials, 2020, 7: 4. |
26 | Sun Z, Lin B C, Yan F. Anion-exchange membranes for alkaline fuel-cell applications: the effects of cations[J]. ChemSusChem, 2018, 11(1): 58-70. |
27 | Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191. |
28 | Mohanty A D, Bae C. Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(41): 17314-17320. |
29 | Meek K M, Elabd Y A. Alkaline chemical stability of polymerized ionic liquids with various cations[J]. Macromolecules, 2015, 48(19): 7071-7084. |
30 | Favero S, Stephens I E L, Titirci M M. Anion exchange ionomers: design considerations and recent advances — an electrochemical perspective[J]. Advanced Materials, 2024, 36(8): 2308238. |
31 | Zhang H B, He X Y, Feng H H, et al. A poly(binaphthyl-co-terphenyl quinuclidinium) anion exchange membrane with excellent alkaline stability and anion conductivity[J]. Journal of Materials Chemistry A, 2024, 12(35): 23570-23576. |
32 | Han L, Gong S T, Zhang X L, et al. Four-arm star-shaped high-performance poly(aryl piperidine) anion exchange membranes for fuel cells[J]. Journal of Materials Chemistry A, 2024, 12(11): 6341-6350. |
33 | Maurya S, Shin S H, Kim Y, et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries[J]. RSC Advances, 2015, 5(47): 37206-37230. |
34 | Fujimoto C, Kim D S, Hibbs M, et al. Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells[J]. Journal of Membrane Science, 2012, 423: 438-449. |
35 | Choe Y K, Fujimoto C, Lee K-S, et al. Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study[J]. Chemistry of Materials, 2014, 26(19): 5675-5682. |
36 | Mohanty A D, Tignor S E, Krause J A, et al. Systematic alkaline stability study of polymer backbones for anion exchange membrane applications[J]. Macromolecules, 2016, 49(9): 3361-3372. |
37 | Clark T J, Robertson N J, Kostalik H A, et al. A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer[J]. Journal of the American Chemical Society, 2009, 131(36): 12888-12889. |
38 | Mandal M, Huang G, Kohl P A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: applications in anion-exchange membrane fuel cells[J]. Journal of Membrane Science, 2019, 570: 394-402. |
39 | Huang G, Mandal M, Peng X, et al. Composite poly(norbornene) anion conducting membranes for achieving durability, water management and high power (3.4 W/cm2) in hydrogen/oxygen alkaline fuel cells[J]. Journal of the Electrochemical Society, 2019, 166(10): F637-F644. |
40 | Mandal M, Huang G, Hassan N U, et al. The importance of water transport in high conductivity and high-power alkaline fuel cells[J]. Journal of the Electrochemical Society, 2019, 167(5): 054501. |
41 | Wang L Q, Peng X, Mustain W E, et al. Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance[J]. Energy & Environmental Science, 2019, 12(5): 1575-1579. |
42 | Wang L Q, Brink J J, Liu Y, et al. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability[J]. Energy & Environmental Science, 2017, 10(10): 2154-2167. |
43 | Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4: 392-398. |
44 | Chen N J, Wang H H, Kim S P, et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells[J]. Nature Communications, 2021, 12: 2367. |
45 | Song W J, Peng K, Xu W, et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices[J]. Nature Communications, 2023, 14(1): 2732. |
46 | Ryoo G W, Shin S-H, Song I W, et al. Poly(aryl piperidium)-based AEMs utilizing spirobifluorene as a branching agent[J]. Advanced Functional Materials, 2024, 2408545. |
47 | Zhang H Q, Xu W, Song W J, et al. High-performance spiro-branched polymeric membranes for sustainability applications[J]. Nature Sustainability, 2024, 7: 910-919. |
48 | Wu X Y, Chen N J, Klok H A, et al. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2022, 134(7): e202114892. |
49 | Hu C, Kang N Y, Kang H W, et al. Triptycene branched poly(aryl-co-aryl piperidinium) electrolytes for alkaline anion exchange membrane fuel cells and water electrolyzers[J]. Angewandte Chemie International Edition, 2024, 63(3): e202316697. |
50 | Peng H Q, Li Q H, Hu M X, et al. Alkaline polymer electrolyte fuel cells stably working at 80℃[J]. Journal of Power Sources, 2018, 390: 165-167. |
51 | Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3): 513-523. |
52 | Bakvand P M, Jannasch P. Poly(arylene alkylene)s with pendent benzyl-tethered ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2023, 668: 121229. |
53 | Zeng M Y, He X Y, Wen J, et al. N-methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability[J]. Advanced Materials, 2023, 35(51): 2306675. |
54 | Wen J, He X Y, Zhang G B, et al. Poly(aryl N-methyl quinuclidinium) anion exchange membrane with both ultra-high alkaline stability and dimensional stability[J]. Science China Materials, 2024, 67(3): 965-973. |
55 | Hugar K M, Kostalik H A, Coates G W. Imidazolium cations with exceptional alkaline stability: a systematic study of structure-stability relationships[J]. Journal of the American Chemical Society, 2015, 137(27): 8730-8737. |
56 | You W, Padgett E, MacMillan S N, et al. Highly conductive and chemically stable alkaline anion exchange membranes via ROMP of trans-cyclooctene derivatives[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(20): 9729-9734. |
57 | Xue B X, Wang F, Zheng J F, et al. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations[J]. Molecular Systems Design & Engineering, 2019, 4(5): 1039-1047. |
58 | Gu S, Wang J H, Kaspar R B, et al. Permethyl cobaltocenium (Cp*2Co+) as an ultra-stable cation for polymer hydroxide-exchange membranes[J]. Scientific Reports, 2015, 5: 11668. |
59 | Zhu T Y, Sha Y, Firouzjaie H A, et al. Rational synthesis of metallo-cations toward redox- and alkaline-stable metallo-polyelectrolytes[J]. Journal of the American Chemical Society, 2020, 142(2): 1083-1089. |
60 | Ge X L, He Y B, Guiver M D, et al. Alkaline anion-exchange membranes containing mobile ion shuttles[J]. Advanced Materials, 2016, 28(18): 3467-3472. |
61 | Chen Y N, Li Z M, Chen N J, et al. Preparation and characterization of cross-linked polyphosphazene-crown ether membranes for alkaline fuel cells[J]. Electrochimica Acta, 2017, 258: 311-321. |
62 | Omasta T J, Park A M, LaManna J M, et al. Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs[J]. Energy & Environmental Science, 2018, 11(3): 551-558. |
63 | Yu W S, Xu Y, Shen X H, et al. Ionomer boosts catalyst layer oxygen transport and membrane ion conduction for fuel cells[J]. Next Energy, 2024, 3: 100104. |
64 | Liang X, Shehzad M A, Zhu Y, et al. Ionomer cross-linking immobilization of catalyst nanoparticles for high performance alkaline membrane fuel cells[J]. Chemistry of Materials, 2019, 31(19): 7812-7820. |
65 | Liang X, Ge X L, He Y B, et al. 3D-zipped interface: in situ covalent-locking for high performance of anion exchange membrane fuel cells[J]. Advanced Science, 2021, 8(22): 2102637. |
66 | Zhu Y, Ding L, Liang X, et al. Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells[J]. Energy & Environmental Science, 2018, 11(12): 3472-3479. |
67 | Xiao L, Zhang H, Jana T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications[J]. Fuel Cells, 2005, 5(2): 287-295. |
68 | Yuan W, Zeng L P, Zhang T C, et al. High performance anion exchange membranes with confined sub-2-nm ion channel[J]. Advanced Functional Materials, 2023, 33(36): 2307041. |
69 | Liu X, Xie N, Xue J D, et al. Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells[J]. Nature Energy, 2022, 7: 329-339. |
70 | Ma Y C, Hu C, Yi G Q, et al. Durable multiblock poly(biphenyl alkylene) anion exchange membranes with microphase separation for hydrogen energy conversion[J]. Angewandte Chemie International Edition, 2023, 62(41): e202311509. |
71 | Zhang F, Zhang Y, Sun L X, et al. A π-conjugated anion-exchange membrane with an ordered ion-conducting channel via the McMurray coupling reaction[J]. Angewandte Chemie, 2023, 135(4): e202215017. |
72 | Zhu H, Li Y X, Chen N J, et al. Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5]undecanium) for long-lifetime anion exchange membrane applications[J]. Journal of Membrane Science, 2019, 590: 117307. |
73 | Su X, Nan S B, Gu Y, et al. Diphenylanthracene-based ion exchange membranes with high conductivity and robust chemical stability for acid-alkaline amphoteric water electrolysis[J]. Chemical Engineering Journal, 2024, 482: 149056. |
74 | Mandal M, Huang G, Kohl P A. Highly conductive anion-exchange membranes based on cross-linked poly(norbornene): vinyl addition polymerization[J]. ACS Applied Energy Materials, 2019, 2(4): 2447-2457. |
Viewed | ||||||
Full text 283
|
|
|||||
Abstract |
|
|||||