CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1469-1484.DOI: 10.11949/0438-1157.20231409
• Reviews and monographs • Previous Articles Next Articles
Binbin FENG(), Mingjia LU(), Zhihong HUANG, Yiwen CHANG, Zhiming CUI()
Received:
2023-12-31
Revised:
2024-03-15
Online:
2024-06-06
Published:
2024-04-25
Contact:
Zhiming CUI
通讯作者:
崔志明
作者简介:
冯彬彬(2004—),男,本科生,1786021507@qq.com基金资助:
CLC Number:
Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells[J]. CIESC Journal, 2024, 75(4): 1469-1484.
冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484.
Add to citation manager EndNote|Ris|BibTeX
碳载体 | BET比表面积/(m2/g) | 催化剂中Pt负载量/(mg/cm2) | 催化剂电化学表面积/(m2/g) | 催化剂质量 活性/( | 0.6 V下工作功率密度/(mW/cm2) | 峰值功率密度/(mW/cm2) | 文献 |
---|---|---|---|---|---|---|---|
氮掺杂蚀刻碳纳米管 | 235.48 | 0.1 | — | — | 840 | 950 | [ |
高度多孔的氮掺杂碳纳米纤维 | 934.9 | 0.55 | 11.7 | 193.8 | — | 655.1 | [ |
有序介孔碳 | 480.81 | 0.2 | 98.19 | 660 | 918 | 1170 | [ |
垂直排列的碳纳米管 | — | 0.05 | — | — | 790 | 1610 | [ |
纳米线 | — | 0.047 | 73.2 | 1060 | 840 | 1016 | [ |
纳米线阵列 | — | 0.312 | 29.0 | 0.062 | 541 | — | [ |
Table 1 Application of carbon supports in practical fuel cells
碳载体 | BET比表面积/(m2/g) | 催化剂中Pt负载量/(mg/cm2) | 催化剂电化学表面积/(m2/g) | 催化剂质量 活性/( | 0.6 V下工作功率密度/(mW/cm2) | 峰值功率密度/(mW/cm2) | 文献 |
---|---|---|---|---|---|---|---|
氮掺杂蚀刻碳纳米管 | 235.48 | 0.1 | — | — | 840 | 950 | [ |
高度多孔的氮掺杂碳纳米纤维 | 934.9 | 0.55 | 11.7 | 193.8 | — | 655.1 | [ |
有序介孔碳 | 480.81 | 0.2 | 98.19 | 660 | 918 | 1170 | [ |
垂直排列的碳纳米管 | — | 0.05 | — | — | 790 | 1610 | [ |
纳米线 | — | 0.047 | 73.2 | 1060 | 840 | 1016 | [ |
纳米线阵列 | — | 0.312 | 29.0 | 0.062 | 541 | — | [ |
碳载体 | 生产公司 | 材料种类 | BET比表面积/(m2/g) | 颗粒尺寸/nm | 电导率/(S/cm) | 文献 |
---|---|---|---|---|---|---|
Vulcan XC-72 | Cabot Corp. | 锅炉黑 | 250 | 30 | 2.77 | [ |
Black Pearls 2000 | Cabot Corp. | 锅炉黑 | 1500 | 15 | >1 | [ |
Ketjen EC 300J | Ketjen Black International | 锅炉黑 | 800 | 30~40 | 4 | [ |
Ketjen EC600JD | Ketjen Black International | 锅炉黑 | 1250 | 35~40 | 10~100 | [ |
Denka black | Denka | 乙炔黑 | 69 | 35 | 4 | [ |
Table 2 Comparison of different commercial carbon supports
碳载体 | 生产公司 | 材料种类 | BET比表面积/(m2/g) | 颗粒尺寸/nm | 电导率/(S/cm) | 文献 |
---|---|---|---|---|---|---|
Vulcan XC-72 | Cabot Corp. | 锅炉黑 | 250 | 30 | 2.77 | [ |
Black Pearls 2000 | Cabot Corp. | 锅炉黑 | 1500 | 15 | >1 | [ |
Ketjen EC 300J | Ketjen Black International | 锅炉黑 | 800 | 30~40 | 4 | [ |
Ketjen EC600JD | Ketjen Black International | 锅炉黑 | 1250 | 35~40 | 10~100 | [ |
Denka black | Denka | 乙炔黑 | 69 | 35 | 4 | [ |
Fig.1 (a) Schematic diagram of preparing membrane electrodes using the ordered structure constructed by platinum nanoparticles on VACNT as cathode and commercial platinum /C as anode[6]; (b) Preparation procedure of VACNT electrodes MEA[69]; (c) Schematic illustration of synthesis of Pt catalyst on VACNT and fabrication of PEM fuel cell[70]
Fig.2 (a) Porous carbon of supported catalyst[73]; (b) The surface of carbon black is covalently grafted to benzene sulfonic acid to provide surface proton conduction[76]; (c) Schematic of the effects of ionomer distribution and thickness on Pt/ carbon surfaces (top) and modified Pt/ N-carbon surfaces (bottom) with respect to proton conductivity and O2 mass transfer[78]
Fig.3 (a) XRD patterns for the carbon supports[86]; (b) Raman spectra of ECP600 and ECP600@NC[87]; (c) Improved water management by incorporating highly graphitized CNFs into the cathode layer[88]
Fig.4 (a) Schematics of synthetic procedure run for formation of PPy-CNT[92]; (b) Preparation schematic illustration of PtCo/C@NC[94]; (c) N 1s XPS spectrum of PtCo/C@NC-700[94]; (d) Design schematics of Pt-SnO2/ MWCNT[101]; (e) Schematic illustration of the Pt-SnO2/MWCNT strong metal-support interaction[101]
1 | Sun Y Y, Polani S, Luo F, et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells[J]. Nature Communications, 2021, 12: 5984. |
2 | Thompson S T, James B D, Huya-Kouadio J M, et al. Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook[J]. Journal of Power Sources, 2018, 399: 304-313. |
3 | Ganguly D, Ramanujam K, Ramaprabhu S. Improving Pt utilization and electrochemical activity of proton exchange membrane fuel cells through surface modification of carbon nanotube catalyst support[J]. Energy Technology, 2024: 2301291. |
4 | Zhang L P, Li T F, Du T H, et al. Manipulation of electronic states of Pt sites via d-band center tuning for enhanced oxygen reduction reaction in proton exchange membrane fuel cells[J]. Inorganic Chemistry, 2024, 63(4): 2138-2147. |
5 | Yang Y, Zhao C L, Wang Z D, et al. Synergistic effects of N-doping and mesoporous structures in block copolymer-derived three-dimensionally ordered mesoporous carbon for PEMFC[J]. International Journal of Hydrogen Energy, 2024, 51: 747-757. |
6 | Meng Q H, Hao C, Yan B W, et al. High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer[J]. Journal of Energy Chemistry, 2022, 71: 497-506. |
7 | Huang J, Peng B S, Stracensky T, et al. 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading[J]. Science China Materials, 2022, 65(3): 704-711. |
8 | Mardle P, Thirunavukkarasu G, Guan S L, et al. Comparative study of PtNi nanowire array electrodes toward oxygen reduction reaction by half-cell measurement and PEMFC test[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42832-42841. |
9 | Zhao Q, Hou M, Jiang S F, et al. Enhanced sulfur dioxide electrooxidation performance on a modified XC-72 carbon catalyst[J]. Journal of Solid State Electrochemistry, 2017, 21(11): 3113-3120. |
10 | Khodabakhshi S, Fulvio P F, Sousaraei A, et al. Oxidative synthesis of yellow photoluminescent carbon nanoribbons from carbon black[J]. Carbon, 2021, 183: 495-503. |
11 | Wang G X, Sun G Q, Wang Q, et al. Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer[J]. Journal of Power Sources, 2008, 180(1): 176-180. |
12 | Zhang S H, Li Q X, Zhou H K, et al. Scalable preparation of Pd/bacteria-rGO(CNT, Ketjen) composites for efficient oxygen reduction catalyst[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5664-5676. |
13 | Kang D S, Kim B J, Lee K J, et al. Developing hollow carbon balls by oxidation of carbon blacks[J]. Carbon Letters, 2013, 14(1): 55-57. |
14 | Kanninen P, Eriksson B, Davodi F, et al. Carbon corrosion properties and performance of multi-walled carbon nanotube support with and without nitrogen-functionalization in fuel cell electrodes[J]. Electrochimica Acta, 2020, 332: 135384. |
15 | Ortiz-Herrera J C, Cruz-Martínez H, Solorza-Feria O, et al. Recent progress in carbon nanotubes support materials for Pt-based cathode catalysts in PEM fuel cells[J]. International Journal of Hydrogen Energy, 2022, 47(70): 30213-30224. |
16 | Saha M S, Li R Y, Sun X L, et al. 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper[J]. Electrochemistry Communications, 2009, 11(2): 438-441. |
17 | Sui S, Wang X Y, Zhou X T, et al. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 1808-1825. |
18 | Li Y J, Li Y J, Zhu E B, et al. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite[J]. Journal of the American Chemical Society, 2012, 134(30): 12326-12329. |
19 | Rodriguez N M, Kim M S, Baker R T K. Carbon nanofibers: a unique catalyst support medium[J]. The Journal of Physical Chemistry, 1994, 98(50): 13108-13111. |
20 | Wang Z J, Zhang Q X, Kuehner D, et al. The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis[J]. Carbon, 2008, 46(13): 1687-1692. |
21 | Hsin Y L, Hwang K C, Yeh C T. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells[J]. Journal of the American Chemical Society, 2007, 129(32): 9999-10010. |
22 | Li X, Liu Y, Fu L, et al. Efficient synthesis of carbon nanotube-nanoparticle hybrids[J]. Advanced Functional Materials, 2006, 16(18): 2431-2437. |
23 | Yang G W, Gao G Y, Zhao G Y, et al. Effective adhesion of Pt nanoparticles on thiolated multi-walled carbon nanotubes and their use for fabricating electrocatalysts[J]. Carbon, 2007, 45(15): 3036-3041. |
24 | Lee Y J, Kim H E, Lee E, et al. Ultra-low Pt loaded porous carbon microparticles with controlled channel structure for high-performance fuel cell catalysts[J]. Advanced Energy Materials, 2021, 11(48): 2102970. |
25 | Yarlagadda V, Ramaswamy N, Kukreja R S, et al. Ordered mesoporous carbon supported fuel cell cathode catalyst for improved oxygen transport[J]. Journal of Power Sources, 2022, 532: 231349. |
26 | Zhao W Y, Ye Y K, Jiang W J, et al. Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2020, 8(31): 15822-15828. |
27 | Zhao W Y, Chi B, Liang L C, et al. Optimizing the electronic structure of ordered Pt-co-Ti ternary intermetallic catalyst to boost acidic oxygen reduction[J]. ACS Catalysis, 2022, 12(13): 7571-7578. |
28 | Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nature Catalysis, 2019, 2: 578-589. |
29 | Gasteiger H A. Proton exchange fuel cell materials and R&D needs for future market success[J]. Electrochemistry, 2007, 75(2): 103. |
30 | Wang Y J, Wilkinson D P, Guest A, et al. Synthesis of Pd and Nb-doped TiO2 composite supports and their corresponding Pt-Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction[J]. Journal of Power Sources, 2013, 221: 232-241. |
31 | Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chemical Reviews, 2011, 111(12): 7625-7651. |
32 | Wang Y J, Fang B Z, Li H, et al. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells[J]. Progress in Materials Science, 2016, 82: 445-498. |
33 | Gasda M D, Eisman G A, Gall D. Sputter-deposited Pt/CrN nanoparticle PEM fuel cell cathodes: limited proton conductivity through electrode dewetting[J]. Journal of the Electrochemical Society, 2010, 157(1): B71. |
34 | Carmo M, Roepke T, Roth C, et al. A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications[J]. Journal of Power Sources, 2009, 191(2): 330-337. |
35 | Litster S, McLean G. PEM fuel cell electrodes[J]. Journal of Power Sources, 2004, 130(1/2): 61-76. |
36 | Haile S M. Fuel cell materials and components[J]. Acta Materialia, 2003, 51(19): 5981-6000. |
37 | Ralph T R, Hards G A, Keating J E, et al. Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks[J]. Journal of the Electrochemical Society, 1997, 144(11): 3845-3857. |
38 | Vedrine J C, Dufaux M, Naccache C, et al. X-Ray photoelectron spectroscopy study of Pd and Pt ions in type Y-zeolite. Electron transfer between metal aggregates and the support as evidenced by X-ray photoelectron spectroscopy and electron spin resonance[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1978, 74: 440. |
39 | Virkar A V, Zhou Y K. Mechanism of catalyst degradation in proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(6): B540. |
40 | Knights S D, Colbow K M, St-Pierre J, et al. Aging mechanisms and lifetime of PEFC and DMFC[J]. Journal of Power Sources, 2004, 127(1): 127-134. |
41 | Harzer G S, Orfanidi A, El-Sayed H, et al. Tailoring catalyst morphology towards high performance for low Pt loaded PEMFC cathodes[J]. Journal of the Electrochemical Society, 2018, 165(10): F770-F779. |
42 | Lin P Z, Sun J, Wu M C, et al. A multiscale model for proton exchange membrane fuel cells with order-structured catalyst layers[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123092. |
43 | Su K H, Sui S, Yao X Y, et al. Controlling Pt loading and carbon matrix thickness for a high performance Pt-nanowire catalyst layer in PEMFCs[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3397-3403. |
44 | Wang M, Chen M, Yang Z Y, et al. High-performance and durable cathode catalyst layer with hydrophobic C@PTFE particles for low-Pt loading membrane assembly electrode of PEMFC[J]. Energy Conversion and Management, 2019, 191: 132-140. |
45 | Deng X, Huang C, Pei X D, et al. Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: a review[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1529-1542. |
46 | Rahman M A, Mojica F, Sarker M, et al. Development of 1-D multiphysics PEMFC model with dry limiting current experimental validation[J]. Electrochimica Acta, 2019, 320: 134601. |
47 | Zhao Z P, Hossain M D, Xu C C, et al. Tailoring a three-phase microenvironment for high-performance oxygen reduction reaction in proton exchange membrane fuel cells[J]. Matter, 2020, 3(5): 1774-1790. |
48 | Sun F M, Liu H J, Di Q, et al. Tailoring the Pt/ionomer interface for enhancing the local oxygen transport in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2023, 11(44): 24026-24037. |
49 | Escudero-Escribano M, Malacrida P, Hansen M H, et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction[J]. Science, 2016, 352(6281): 73-76. |
50 | Lim C, Fairhurst A R, Ransom B J, et al. Role of transition metals in Pt alloy catalysts for the oxygen reduction reaction[J]. ACS Catalysis, 2023, 13(22): 14874-14893. |
51 | Wu D Z, Shen X C, Pan Y B, et al. Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives[J]. ChemNanoMat, 2020, 6(1): 32-41. |
52 | Callejas-Tovar R, Diaz C A, de la Hoz J M M, et al. Dealloying of platinum-based alloy catalysts: kinetic Monte Carlo simulations[J]. Electrochimica Acta, 2013, 101: 326-333. |
53 | Sahu A, Mondal K, Pala R G. Activated porous highly enriched platinum and palladium electrocatalysts from dealloyed noncrystalline alloys for enhanced hydrogen evolution[J]. ChemElectroChem, 2020, 7(21): 4405-4416. |
54 | Xiao Z J, Wu H, Zhong H C, et al. De-alloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction[J]. Nanoscale, 2021, 13(32): 13896-13904. |
55 | Koh J H, Abbaraju R, Parthasarathy P, et al. Design and synthesis of degradation-resistant core-shell catalysts for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 261: 271-277. |
56 | Kongkanand A, Subramanian N P, Yu Y C, et al. Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst[J]. ACS Catalysis, 2016, 6(3): 1578-1583. |
57 | Sun M M, Lv Y, Song Y J, et al. CO-tolerant PtRu@h-BN/C core-shell electrocatalysts for proton exchange membrane fuel cells[J]. Applied Surface Science, 2018, 450: 244-250. |
58 | Wang C, An C H, Qin C L, et al. Noble metal-based catalysts with core-shell structure for oxygen reduction reaction: progress and prospective[J]. Nanomaterials, 2022, 12(14): 2480. |
59 | Cai X, Zheng T, Hua S Y, et al. Gram-scale synthesis of Pt-Co core-shell catalyst and its improved performance in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2023, 581: 233483. |
60 | Fidiani E, Thirunavukkarasu G, Li Y, et al. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2021, 9(9): 5578-5587. |
61 | Kim C, Lee H. Applying shape-controlled Pt nano-dendrites supported on carbon for membrane-electrode assembly in a proton exchange membrane fuel cell[J]. Fuel Cells, 2013, 13(5): 889-894. |
62 | Lin R, Cai X, Zeng H, et al. Stability of high-performance Pt-based catalysts for oxygen reduction reactions[J]. Advanced Materials, 2018, 30(17): e1705332. |
63 | Becknell N, Son Y, Kim D, et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts[J]. Journal of the American Chemical Society, 2017, 139(34): 11678-11681. |
64 | Ma G, Zhao X N, Wang J X, et al. Structural evolution of PtCu nanoframe for efficient oxygen reduction reactions[J]. Journal of Electroanalytical Chemistry, 2022, 922: 116756. |
65 | Chen M, Zhao C, Sun F M, et al. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system[J]. eTransportation, 2020, 5: 100075. |
66 | Yarlagadda V, Carpenter M K, Moylan T E, et al. Boosting fuel cell performance with accessible carbon mesopores[J]. ACS Energy Letters, 2018, 3(3): 618-621. |
67 | Deng R Y, Xia Z X, Sun R L, et al. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 43(4): 33-39. |
68 | Liang L Z, Wei Y, Zhang X R, et al. 3D model of an order-structured cathode catalyst layer with vertically aligned carbon nanotubes for PEM fuel cells under the water flooding condition[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 695-705. |
69 | Murata S, Imanishi M, Hasegawa S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 253: 104-113. |
70 | Tian Z Q, Lim S H, Poh C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214. |
71 | Ko M, Padgett E, Yarlagadda V, et al. Revealing the nanostructure of mesoporous fuel cell catalyst supports for durable, high-power performance[J]. Journal of the Electrochemical Society, 2021, 168(2): 024512. |
72 | Kikkawa N, Jinnouchi R. Does an ionomer penetrate a carbon mesopore? Free-energy analysis using molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2022, 126(28): 11518-11528. |
73 | Fan L H, Deng H, Zhang Y G, et al. Towards ultralow platinum loading proton exchange membrane fuel cells[J]. Energy & Environmental Science, 2023, 16(4): 1466-1479. |
74 | Wang G X, Zhao W, Mansoor M, et al. Recent progress in using mesoporous carbon materials as catalyst support for proton exchange membrane fuel cells[J]. Nanomaterials, 2023, 13(21): 2818. |
75 | Liu S Q, Yuan S, Liang Y W, et al. Engineering the catalyst layers towards enhanced local oxygen transport of low-Pt proton exchange membrane fuel cells: materials, designs, and methods[J]. International Journal of Hydrogen Energy, 2023, 48(11): 4389-4417. |
76 | Yoshihara R, Wu D, Phua Y K, et al. Ionomer-free electrocatalyst using acid-grafted carbon black as a proton-conductive support[J]. Journal of Power Sources, 2022, 529: 231192. |
77 | Glass D E, Galvan V, Iulliucci M, et al. Optimization of platinum loading on partially fluorinated carbon catalysts for enhanced proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2022, 542: 231725. |
78 | Ott S, Orfanidi A, Schmies H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19: 77-85. |
79 | Liu F F, Gao Z L, Su J Z, et al. An experimental investigation of the effect of platinum on the corrosion of cathode carbon support in a PEMFC[J]. ChemSusChem, 2022, 15(10): e202102726. |
80 | Speder J, Zana A, Spanos I, et al. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts — the influence of the platinum to carbon ratio on the degradation rate[J]. Journal of Power Sources, 2014, 261: 14-22. |
81 | Mansir I B, Okonkwo P C. A focused review of carbon corrosion mechanism in proton exchange membrane fuel cell during start-up and shut-down processes[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45(2): 3231-3245. |
82 | Zhao J J, Huang X M, Chang H W, et al. Effects of operating temperature on the carbon corrosion in a proton exchange membrane fuel cell under high current density[J]. Energy Conversion and Management: X, 2021, 10: 100087. |
83 | Ren P, Pei P C, Li Y H, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80: 100859. |
84 | Wang J, Xue Q, Li B, et al. Preparation of a graphitized-carbon-supported PtNi octahedral catalyst and application in a proton-exchange membrane fuel cell[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7047-7056. |
85 | Kim D W, Kil H S, Kim J, et al. Highly graphitized carbon from non-graphitizable raw material and its formation mechanism based on domain theory[J]. Carbon, 2017, 121: 301-308. |
86 | Prithi J A, Vedarajan R, Ranga Rao G, et al. Functionalization of carbons for Pt electrocatalyst in PEMFC[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17871-17885. |
87 | Zhu S J, Huang Y H, Yu T, et al. Enhance the durability of the oxygen reduction reaction catalyst through the synergy of improved graphitization and nitrogen doping of carbon carrier[J]. International Journal of Hydrogen Energy, 2024, 51: 956-965. |
88 | Chung S, Shin D, Choun M, et al. Improved water management of Pt/C cathode modified by graphitized carbon nanofiber in proton exchange membrane fuel cell[J]. Journal of Power Sources, 2018, 399: 350-356. |
89 | Fujigaya T, Nakashima N. Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials[J]. Advanced Materials, 2013, 25(12): 1666-1681. |
90 | Shi Y, Peng L L, Ding Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chemical Society Reviews, 2015, 44(19): 6684-6696. |
91 | Shao Y Y, Zhang S, Kou R, et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction[J]. Journal of Power Sources, 2010, 195(7): 1805-1811. |
92 | Hyun K, Lee J H, Yoon C W, et al. Improvement in oxygen reduction activity of polypyrrole-coated PtNi alloy catalyst prepared for proton exchange membrane fuel cells[J]. Synthetic Metals, 2014, 190: 48-55. |
93 | Yoo J M, Shin H, Chung D Y, et al. Carbon shell on active nanocatalyst for stable electrocatalysis[J]. Accounts of Chemical Research, 2022, 55(9): 1278-1289. |
94 | Wang F H, Guo C, Di S X, et al. Effect of nitrogen-containing carbon shell-coated carbon support on the catalytic performance of platinum-cobalt alloy catalyst for oxygen reduction[J]. Energy & Fuels, 2023, 37(5): 3980-3990. |
95 | Jeon Y, Ji Y, Cho Y I, et al. Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst[J]. ACS Nano, 2018, 12(7): 6819-6829. |
96 | Liu Y, Shrestha S, Mustain W E. Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media[J]. ACS Catalysis, 2012, 2(3): 456-463. |
97 | He C, Sankarasubramanian S, Ells A, et al. Self-anchored platinum-decorated antimony-doped-tin oxide as a durable oxygen reduction electrocatalyst[J]. ACS Catalysis, 2021, 11(12): 7006-7017. |
98 | He C, Wang X F, Sankarasubramanian S, et al. Highly durable and active Pt/Sb-doped SnO2 oxygen reduction reaction electrocatalysts produced by atomic layer deposition[J]. ACS Applied Energy Materials, 2020, 3(6): 5774-5783. |
99 | Hou S Y, Chen R, Zou H B, et al. High-performance membrane electrode assembly with multi-functional Pt/SnO2-SiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9197-9203. |
100 | Shahgaldi S, Hamelin J. The effect of low platinum loading on the efficiency of PEMFC's electrocatalysts supported on TiO2-Nb, and SnO2-Nb: an experimental comparison between active and stable conditions[J]. Energy Conversion and Management, 2015, 103: 681-690. |
101 | Min H, Choi J H, Kang H E, et al. Enhanced durability and catalytic performance of Pt-SnO2/multi-walled carbon nanotube with shifted d-band center for proton-exchange membrane fuel cells[J]. Small Structures, 2024, 5(3): 2470013. |
102 | Joo T, Hu L M, Hong B K, et al. On the origin of deactivation of reversal-tolerant fuel cell anodes under voltage reversal conditions[J]. Journal of Power Sources, 2020, 472: 228439. |
103 | Kim H E, Shin S, Lee H. Pt-IrO x catalysts immobilized on defective carbon for efficient reversal tolerant anode in proton exchange membrane fuel cells[J]. Journal of Catalysis, 2021, 395: 404-411. |
104 | Artyushkova K, Pylypenko S, Dowlapalli M, et al. Structure-to-property relationships in fuel cell catalyst supports: correlation of surface chemistry and morphology with oxidation resistance of carbon blacks[J]. Journal of Power Sources, 2012, 214: 303-313. |
105 | Bai J L, Ke S J, Song J, et al. Surface engineering of carbon-supported platinum as a route to electrocatalysts with superior durability and activity for PEMFC cathodes[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5287-5297. |
106 | Jiménez-Morales I, Reyes-Carmona A, Dupont M, et al. Correlation between the surface characteristics of carbon supports and their electrochemical stability and performancein fuel cell cathodes[J]. Carbon Energy, 2021, 3(4): 654-665. |
107 | Chi B, Hou S Y, Liu G Z, et al. Tuning hydrophobic-hydrophilic balance of cathode catalyst layer to improve cell performance of proton exchange membrane fuel cell (PEMFC) by mixing polytetrafluoroethylene (PTFE)[J]. Electrochimica Acta, 2018, 277: 110-115. |
[1] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[2] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[3] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[4] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[5] | Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed [J]. CIESC Journal, 2024, 75(4): 1414-1428. |
[6] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[7] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[8] | Wenjun LI, Zhongyang ZHAO, Zhen NI, Can ZHOU, Chenghang ZHENG, Xiang GAO. CFD numerical simulation of wet flue gas desulfurization:performance improvement based on gas-liquid mass transfer enhancement [J]. CIESC Journal, 2024, 75(2): 505-519. |
[9] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[10] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[11] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||