CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1647-1660.DOI: 10.11949/0438-1157.20241195
• Process system engineering • Previous Articles Next Articles
Fangping XU1,2(), Hui YANG1,2(
), Jun CHEN1,2, Jianyong ZHU1,2, Rongxiu LU1,2
Received:
2024-10-28
Revised:
2024-12-30
Online:
2025-05-12
Published:
2025-04-25
Contact:
Hui YANG
徐芳萍1,2(), 杨辉1,2(
), 陈俊1,2, 朱建勇1,2, 陆荣秀1,2
通讯作者:
杨辉
作者简介:
徐芳萍(1986—),女,博士研究生,讲师,stoneandrose@163.com
基金资助:
CLC Number:
Fangping XU, Hui YANG, Jun CHEN, Jianyong ZHU, Rongxiu LU. Soft sensor of rare earth element content with transfer learning and residual attention convolutional neural network[J]. CIESC Journal, 2025, 76(4): 1647-1660.
徐芳萍, 杨辉, 陈俊, 朱建勇, 陆荣秀. 基于迁移学习与残差注意力卷积网络的稀土元素组分含量软测量[J]. 化工学报, 2025, 76(4): 1647-1660.
序号 | Layer | 卷积核大小-通道数 | 输出大小 |
---|---|---|---|
1 | 输入 | — | 18×1 |
2 | 特征融合层 | — | 12×1 |
3 | 注意力机制层 | 8×1-8 | 23× 8 |
4 | RAB1 | 3×1-8 | 23× 8 |
5 | RAB2 | 3×1-16 | 23×16 |
6 | RAB3 | 3×1-32 | 23×32 |
7 | RAB4 | 3×1-64 | 23×64 |
8 | 平均池化层 | 3×164 | 11×64 |
9 | 全连接层 | — | 256×1 |
10 | 输出 | — | 1×1 |
Table 1 The structure of MRAB-CNN
序号 | Layer | 卷积核大小-通道数 | 输出大小 |
---|---|---|---|
1 | 输入 | — | 18×1 |
2 | 特征融合层 | — | 12×1 |
3 | 注意力机制层 | 8×1-8 | 23× 8 |
4 | RAB1 | 3×1-8 | 23× 8 |
5 | RAB2 | 3×1-16 | 23×16 |
6 | RAB3 | 3×1-32 | 23×32 |
7 | RAB4 | 3×1-64 | 23×64 |
8 | 平均池化层 | 3×164 | 11×64 |
9 | 全连接层 | — | 256×1 |
10 | 输出 | — | 1×1 |
模型 | P(准确率)/% | AP(平均准确率)/% | MeanRE | MaxRE | RMSE | R2 | |
---|---|---|---|---|---|---|---|
Pr | Nd | ||||||
CNN | 81.30 | 80.60 | 80.95 | 2.8367 | 18.5314 | 2.1562 | 0.9931 |
RAB-CNN | 84.60 | 85.20 | 84.90 | 2.3687 | 16.8647 | 1.9935 | 0.9976 |
MRAB-CNN | 88.40 | 89.20 | 88.80 | 0.9278 | 4.3278 | 0.8025 | 0.9998 |
Table 2 Results of model ablation experiment
模型 | P(准确率)/% | AP(平均准确率)/% | MeanRE | MaxRE | RMSE | R2 | |
---|---|---|---|---|---|---|---|
Pr | Nd | ||||||
CNN | 81.30 | 80.60 | 80.95 | 2.8367 | 18.5314 | 2.1562 | 0.9931 |
RAB-CNN | 84.60 | 85.20 | 84.90 | 2.3687 | 16.8647 | 1.9935 | 0.9976 |
MRAB-CNN | 88.40 | 89.20 | 88.80 | 0.9278 | 4.3278 | 0.8025 | 0.9998 |
迁移学习策略 | MeanRE | MaxRE | RMSE | R2 |
---|---|---|---|---|
策略1(无迁移学习) | 0.8009 | 2.3040 | 0.7011 | 0.9992 |
策略2(参数全固定迁移) | 1.8575 | 6.5490 | 1.9234 | 0.9946 |
策略3(参数全迁移) | 0.5047 | 2.7161 | 0.4403 | 0.9997 |
策略4(残差块参数迁移) | 0.6171 | 1.3897 | 0.5447 | 0.9995 |
策略5(卷积层参数迁移) | 0.6973 | 4.6806 | 0.5139 | 0.9996 |
策略6(基于MMD迁移) | 0.3618 | 1.2179 | 0.4204 | 0.9997 |
Table 3 Prediction of different transfer learning strategies
迁移学习策略 | MeanRE | MaxRE | RMSE | R2 |
---|---|---|---|---|
策略1(无迁移学习) | 0.8009 | 2.3040 | 0.7011 | 0.9992 |
策略2(参数全固定迁移) | 1.8575 | 6.5490 | 1.9234 | 0.9946 |
策略3(参数全迁移) | 0.5047 | 2.7161 | 0.4403 | 0.9997 |
策略4(残差块参数迁移) | 0.6171 | 1.3897 | 0.5447 | 0.9995 |
策略5(卷积层参数迁移) | 0.6973 | 4.6806 | 0.5139 | 0.9996 |
策略6(基于MMD迁移) | 0.3618 | 1.2179 | 0.4204 | 0.9997 |
序号 | 模型 | 参数设置 |
---|---|---|
1 | GA-ELM | 种群大小为20, 迭代次数为100, 交叉概率为0.01, 变异概率为0.7, 极限学习机的节点个数设置为25 |
2 | LSSVM | 核函数为径向基核函数(rbf), 惩罚因子C为70, 核函数的系数为0.11 |
3 | Xgboost | 决策树个数为84, 学习率为0.205, 决策树的最大深度为15, 子节点的最小样本权重为8, L2的正则项的参数为3.31 |
4 | MLP | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
5 | VGG11 | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
6 | VGG16 | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
7 | 1D-CNN | 迭代次数350,批大小2,优化器Adam,初始学习率0.001 |
8 | RAB-CNN | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
9 | MRAB-CNN | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
10 | This work | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
Table 4 Parameter settings of different models
序号 | 模型 | 参数设置 |
---|---|---|
1 | GA-ELM | 种群大小为20, 迭代次数为100, 交叉概率为0.01, 变异概率为0.7, 极限学习机的节点个数设置为25 |
2 | LSSVM | 核函数为径向基核函数(rbf), 惩罚因子C为70, 核函数的系数为0.11 |
3 | Xgboost | 决策树个数为84, 学习率为0.205, 决策树的最大深度为15, 子节点的最小样本权重为8, L2的正则项的参数为3.31 |
4 | MLP | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
5 | VGG11 | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
6 | VGG16 | 迭代次数350,批大小2,优化器RMSprop,初始学习率0.001 |
7 | 1D-CNN | 迭代次数350,批大小2,优化器Adam,初始学习率0.001 |
8 | RAB-CNN | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
9 | MRAB-CNN | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
10 | This work | 注意力层通道数为8, 残差注意力单元个数为4, 通道数依次为8、16、32和64, 全连接层的神经元个数为256 |
模型 | 总样本数 | MeanRE | MaxRE | RMSE | R2 | 模型 | 总样本数 | MeanRE | MaxRE | RMSE | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
MLP | 500 | 15.4464 | 88.5432 | 10.3357 | 0.6386 | LSSVM | 500 | 4.1114 | 29.4635 | 2.7759 | 0.9887 |
800 | 12.4328 | 79.6653 | 8.4678 | 0.7016 | 800 | 1.9341 | 8.4924 | 1.7182 | 0.9956 | ||
1600 | 9.5432 | 50.3321 | 4.4432 | 0.8034 | 1600 | 1.7117 | 5.3684 | 1.3874 | 0.9971 | ||
2000 | 6.6654 | 22.9568 | 3.2689 | 0.8943 | 2000 | 1.2925 | 3.1835 | 1.1856 | 0.9979 | ||
Xgboost | 500 | 9.1334 | 61.4244 | 6.4287 | 0.9394 | 1D-CNN | 500 | 4.1467 | 21.6532 | 2.9978 | 0.9900 |
800 | 4.9097 | 37.8037 | 3.4908 | 0.9821 | 800 | 2.2345 | 14.5567 | 1.9465 | 0.9938 | ||
1600 | 2.0379 | 10.3197 | 1.5585 | 0.9964 | 1600 | 1.6457 | 8.9656 | 1.5443 | 0.9953 | ||
2000 | 1.7880 | 7.8779 | 1.2002 | 0.9978 | 2000 | 0.9558 | 4.3562 | 0.9412 | 0.9980 | ||
VGG16 | 500 | 8.6453 | 53.9932 | 5.1167 | 0.9404 | RAB-CNN | 500 | 3.0991 | 20.9185 | 2.3277 | 0.9920 |
800 | 4.0467 | 32.3865 | 3.0168 | 0.9644 | 800 | 1.8624 | 12.9268 | 1.4872 | 0.9967 | ||
1600 | 1.8325 | 10.2274 | 1.3864 | 0.9837 | 1600 | 1.3668 | 7.8556 | 1.0899 | 0.9982 | ||
2000 | 1.8394 | 6.4319 | 1.6743 | 0.9921 | 2000 | 0.8779 | 3.2721 | 0.8477 | 0.9989 | ||
VGG11 | 500 | 5.1334 | 35.5578 | 4.8432 | 0.9711 | MRAB-CNN | 500 | 2.8841 | 16.1291 | 1.8648 | 0.9949 |
800 | 4.1687 | 27.8843 | 2.9918 | 0.9887 | 800 | 2.0275 | 11.9665 | 1.2957 | 0.9975 | ||
1600 | 1.8267 | 9.8329 | 1.4843 | 0.9951 | 1600 | 1.0481 | 3.8860 | 0.9423 | 0.9980 | ||
2000 | 1.6609 | 7.4431 | 1.6932 | 0.9982 | 2000 | 0.7944 | 3.0284 | 0.6392 | 0.9994 | ||
GA-ELM | 500 | 4.6415 | 24.0305 | 3.0576 | 0.9863 | This work | 500 | 1.4220 | 7.9672 | 0.9127 | 0.9987 |
800 | 3.5152 | 19.4075 | 2.4179 | 0.9914 | 800 | 0.8924 | 4.8243 | 0.804 | 0.9990 | ||
1600 | 2.1098 | 6.5801 | 2.1286 | 0.9933 | 1600 | 0.5895 | 2.5448 | 0.5229 | 0.9996 | ||
2000 | 2.1107 | 8.8973 | 1.5682 | 0.9964 | 2000 | 0.5413 | 1.8107 | 0.4755 | 0.9996 |
Table 5 Prediction of component content under different quantity samples
模型 | 总样本数 | MeanRE | MaxRE | RMSE | R2 | 模型 | 总样本数 | MeanRE | MaxRE | RMSE | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
MLP | 500 | 15.4464 | 88.5432 | 10.3357 | 0.6386 | LSSVM | 500 | 4.1114 | 29.4635 | 2.7759 | 0.9887 |
800 | 12.4328 | 79.6653 | 8.4678 | 0.7016 | 800 | 1.9341 | 8.4924 | 1.7182 | 0.9956 | ||
1600 | 9.5432 | 50.3321 | 4.4432 | 0.8034 | 1600 | 1.7117 | 5.3684 | 1.3874 | 0.9971 | ||
2000 | 6.6654 | 22.9568 | 3.2689 | 0.8943 | 2000 | 1.2925 | 3.1835 | 1.1856 | 0.9979 | ||
Xgboost | 500 | 9.1334 | 61.4244 | 6.4287 | 0.9394 | 1D-CNN | 500 | 4.1467 | 21.6532 | 2.9978 | 0.9900 |
800 | 4.9097 | 37.8037 | 3.4908 | 0.9821 | 800 | 2.2345 | 14.5567 | 1.9465 | 0.9938 | ||
1600 | 2.0379 | 10.3197 | 1.5585 | 0.9964 | 1600 | 1.6457 | 8.9656 | 1.5443 | 0.9953 | ||
2000 | 1.7880 | 7.8779 | 1.2002 | 0.9978 | 2000 | 0.9558 | 4.3562 | 0.9412 | 0.9980 | ||
VGG16 | 500 | 8.6453 | 53.9932 | 5.1167 | 0.9404 | RAB-CNN | 500 | 3.0991 | 20.9185 | 2.3277 | 0.9920 |
800 | 4.0467 | 32.3865 | 3.0168 | 0.9644 | 800 | 1.8624 | 12.9268 | 1.4872 | 0.9967 | ||
1600 | 1.8325 | 10.2274 | 1.3864 | 0.9837 | 1600 | 1.3668 | 7.8556 | 1.0899 | 0.9982 | ||
2000 | 1.8394 | 6.4319 | 1.6743 | 0.9921 | 2000 | 0.8779 | 3.2721 | 0.8477 | 0.9989 | ||
VGG11 | 500 | 5.1334 | 35.5578 | 4.8432 | 0.9711 | MRAB-CNN | 500 | 2.8841 | 16.1291 | 1.8648 | 0.9949 |
800 | 4.1687 | 27.8843 | 2.9918 | 0.9887 | 800 | 2.0275 | 11.9665 | 1.2957 | 0.9975 | ||
1600 | 1.8267 | 9.8329 | 1.4843 | 0.9951 | 1600 | 1.0481 | 3.8860 | 0.9423 | 0.9980 | ||
2000 | 1.6609 | 7.4431 | 1.6932 | 0.9982 | 2000 | 0.7944 | 3.0284 | 0.6392 | 0.9994 | ||
GA-ELM | 500 | 4.6415 | 24.0305 | 3.0576 | 0.9863 | This work | 500 | 1.4220 | 7.9672 | 0.9127 | 0.9987 |
800 | 3.5152 | 19.4075 | 2.4179 | 0.9914 | 800 | 0.8924 | 4.8243 | 0.804 | 0.9990 | ||
1600 | 2.1098 | 6.5801 | 2.1286 | 0.9933 | 1600 | 0.5895 | 2.5448 | 0.5229 | 0.9996 | ||
2000 | 2.1107 | 8.8973 | 1.5682 | 0.9964 | 2000 | 0.5413 | 1.8107 | 0.4755 | 0.9996 |
1 | Chai T Y, Yang H. Situation and developing trend of rare-earth countercurrent extraction processes control[J].Journal of Rare Earths, 2004, 5(1): 604-610. |
2 | Zhang N, Huang C Z, Hu B. ICP-AES determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn[J]. Analytical Sciences, 2007, 23(8): 997-1002. |
3 | Tan D C, Zhu J M, Wang X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. |
4 | Zawisza B, Pytlakowska K, Feist B, et al. Determination of rare earth elements by spectroscopic techniques: a review[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2373-2390. |
5 | 袁静, 沈加林, 刘建坤, 等. 高能偏振能量色散X射线荧光光谱仪测定地质样品中稀土元素[J]. 光谱学与光谱分析, 2018, 38(2): 582. |
Yuan J, Shen J L, Liu J K, et al. Determination of rare earth elements in geological samples by high-energy polarized energy-dispersive X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 582. | |
6 | 杨辉, 高子洁, 陆荣秀. 基于稀土离子颜色特征识别的组分含量检测方法[J]. 中国稀土学报, 2012, 30(1): 108-112. |
Yang H, Gao Z J, Lu R X. Detection method of component content based on rare earth ions color characteristics identification[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(1): 108-112. | |
7 | Lu R X, Yang H. Soft measurement for component content based on adaptive model of Pr/Nd color features[J]. Chinese Journal of Chemical Engineering, 2015, 23(12): 1981-1986. |
8 | 陆荣秀, 叶兆斌, 杨辉, 等. 镨/钕萃取过程组分含量多RBF模型预测[J]. 化工学报, 2016, 67(3): 974-981. |
Lu R X, Ye Z B, Yang H, et al. Multi-RBF models based prediction of component content for Pr/Nd extraction process[J]. CIESC Journal, 2016, 67(3): 974-981. | |
9 | 朱建勇, 张旭乾, 杨辉, 等. 单光照条件变化的镨/钕元素组分含量软测量[J]. 化工学报, 2019, 70(2): 780-788. |
Zhu J Y, Zhang X Q, Yang H, et al. Soft-sensing of Pr/Nd component content under different single illumination conditions[J]. CIESC Journal, 2019, 70(2): 780-788. | |
10 | 陆荣秀, 何权恒, 杨辉, 等. 基于GA-ELM的稀土混合溶液多组分含量预测[J]. 计算机工程, 2021, 47(1): 284-290, 297. |
Lu R X, He Q H, Yang H, et al. Multi-component content prediction of rare earth mixed solution based on GA-ELM[J]. Computer Engineering, 2021, 47(1): 284-290, 297. | |
11 | 陆荣秀, 邓彪, 杨辉, 等. 基于改进的GRA-即时学习算法的镨/钕元素组分含量预测[J]. 控制与决策, 2024, 39(2): 458-466. |
Lu R X, Deng B, Yang H, et al. Prediction of Pr/Nd component content based on improved GRA-just-in-time learning algorithm[J]. Control and Decision, 2024, 39(2): 458-466. | |
12 | Shao L, He J W, Lu X, et al. Aircraft skin damage detection and assessment from UAV images using GLCM and cloud model[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3): 3191-3200. |
13 | Yin S H, Shao Y J, Wu A X, et al. Texture features analysis on micro-structure of paste backfill based on image analysis technology[J]. Journal of Central South University, 2018, 25(10): 2360-2372. |
14 | Varish N, Hasan M K, Khan A, et al. Content-based remote sensing image retrieval method using adaptive tetrolet transform based GLCM features[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(6): 9627-9650. |
15 | Alibabaei S, Rahmani M, Tahmasbi M, et al. Evaluating the gray level co-occurrence matrix-based texture features of magnetic resonance images for glioblastoma multiform patients' treatment response assessment[J]. Journal of Medical Signals and Sensors, 2023, 13(4): 261-271. |
16 | Kamilaris A, Prenafeta-Boldú F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90. |
17 | 王李管, 陈斯佳, 贾明滔, 等. 基于深度学习的黑钨矿图像识别选矿方法[J]. 中国有色金属学报, 2020, 30(5): 1192-1201. |
Wang L G, Chen S J, Jia M T, et al. Beneficiation method of wolframite image recognition based on deep learning[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(5): 1192-1201. | |
18 | Liu E Y, Zhao J X, Sofeia N. Students' entire deep learning personality model and perceived teachers' emotional support[J]. Frontiers in Psychology, 2022, 12: 793548. |
19 | Jiang R H. Understanding, Investigating, and promoting deep learning in language education: a survey on Chinese college students' deep learning in the online EFL teaching context[J]. Frontiers in Psychology, 2022, 13: 955565. |
20 | Sabab M N, Chowdhury M A R, Nirjhor S M M I, et al. Bangla speech recognition using 1D-CNN and LSTM with different dimension reduction techniques[M]//Emerging Technologies in Computing. Cham: Springer International Publishing, 2020: 158-169. |
21 | Ozcanli A K, Baysal M. Islanding detection in microgrid using deep learning based on 1D CNN and CNN-LSTM networks[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100839. |
22 | Du R Y, Zhu S J, Ni H J, et al. Valence-arousal classification of emotion evoked by Chinese ancient-style music using 1D-CNN-BiLSTM model on EEG signals for college students[J]. Multimedia Tools and Applications, 2023, 82(10): 15439-15456. |
23 | Matsuura K, Ashihara T, Moriya T, et al. Transfer learning from pre-trained language models improves end-to-end speech summarization[C]//INTERSPEECH 2023. ISCA, 2023, 23(6): 04233. |
24 | Yang C H, Liang H P, Huang K K, et al. A robust transfer dictionary learning algorithm for industrial process monitoring[J]. Engineering, 2021, 7(9): 1262-1273. |
25 | Wadud M A H, Mridha M F, Shin J, et al. Deep-BERT: transfer learning for classifying multilingual offensive texts on social media[J]. Computer Systems Science and Engineering, 2023, 44(2): 1775-1791. |
26 | 陆荣秀. 基于颜色特征的镨/钕萃取过程组分含量检测方法研究[D]. 南昌: 南昌大学, 2015. |
Lu R X. Study on detection method of component content in Praseodymium/Neodymium extraction process based on color characteristics[D]. Nanchang: Nanchang University, 2015. | |
27 | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770-778. |
28 | 刘铄, 宋俊材, 陆思良, 等. 基于灰度纹理特征提取和CS-SNN的双初级永磁同步直线电机退磁故障诊断研究[J]. 中国电机工程学报, 2023, 43(16): 6464-6474. |
Liu S, Song J C, Lu S L, et al. Demagnetization fault diagnosis research of DPPMSLM based on gray texture feature extraction and CS-SNN[J]. Proceedings of the CSEE, 2023, 43(16): 6464-6474 | |
29 | Özkan K, Mert A, Özdemir S. A new proposed GLCM texture feature: modified Rényi Deng entropy[J]. The Journal of Supercomputing, 2023, 79(18): 21507-21527. |
30 | Breiman L. Random forests[J]. Machine Learning, 2017, 45: 5-32. |
31 | Kamilaris A, Prenafeta-Boldú F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science, 2018, 156(3): 312-322. |
32 | 唐杰, 罗彦波, 李翔宇, 等. 基于近红外光谱数据的一维卷积神经网络模型研究[J]. 光谱学与光谱分析, 2024, 44(3): 731-736. |
Tang J, Luo Y B, Li X Y, et al. Study on one-dimensional convolutional neural network model based on near-infrared spectroscopy data[J]. Spectroscopy and Spectral Analysis, 2024, 44(3): 731-736. | |
33 | 王晋东. 迁移学习导论[M]. 北京: 电子工业出版社, 2021. |
Wang J D. Introduction to Transfer Learning[M]. Beijing: Publishing House of Electronics Industry, 2021. | |
34 | 张奇涵. 基于机器学习算法的稀土萃取过程元素组分含量在线预测研究[D]. 赣州: 江西理工大学, 2023. |
Zhang Q H. On-line prediction of element composition content in rare earth extraction process based on machine learning algorithm[D]. Ganzhou: Jiangxi University of Science and Technology, 2023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||