CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 150-157.DOI: 10.11949/j.issn.0438-1157.20181069
• Process system engineering • Previous Articles Next Articles
Enwei ZHI(),Fei YAN,Mifeng REN,Gaowei YAN()
Received:
2018-09-25
Revised:
2019-01-29
Online:
2019-03-31
Published:
2019-03-31
Contact:
Gaowei YAN
通讯作者:
阎高伟
作者简介:
<named-content content-type="corresp-name">支恩玮</named-content>(1994—),男,硕士研究生,<email>zhienwei_tyut@163.com</email>|阎高伟(1970—),男,博士,教授,<email>yangaowei@tyut.edu.cn</email>
基金资助:
CLC Number:
Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping[J]. CIESC Journal, 2019, 70(S1): 150-157.
支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181069
Working condition | TVAE | TVAE-LM | ||||
---|---|---|---|---|---|---|
MBVR | PD | CVR | MBVR | PD | CVR | |
1→2 | 0.1961 | 0.0345 | 0.0543 | 0.1236 | 0.0266 | 0.0164 |
1→3 | 0.3569 | 0.0430 | 0.1185 | 0.1398 | 0.0291 | 0.0213 |
3→1 | 0.5595 | 0.0791 | 0.0754 | 0.3065 | 0.0579 | 0.0349 |
3→2 | 0.2947 | 0.0594 | 0.0450 | 0.1181 | 0.0291 | 0.0157 |
Table 1 Comparison of prediction results by introducing label mapping(RMSE)
Working condition | TVAE | TVAE-LM | ||||
---|---|---|---|---|---|---|
MBVR | PD | CVR | MBVR | PD | CVR | |
1→2 | 0.1961 | 0.0345 | 0.0543 | 0.1236 | 0.0266 | 0.0164 |
1→3 | 0.3569 | 0.0430 | 0.1185 | 0.1398 | 0.0291 | 0.0213 |
3→1 | 0.5595 | 0.0791 | 0.0754 | 0.3065 | 0.0579 | 0.0349 |
3→2 | 0.2947 | 0.0594 | 0.0450 | 0.1181 | 0.0291 | 0.0157 |
1 | 汤健, 赵立杰, 柴天佑, 等. 基于振动频谱的磨机负荷在线软测量建模[J]. 信息与控制, 2012, 41(1): 123-128. |
TangJ, ZhaoL J, ChaiT Y, et al. On-line soft-sensing modelling of mill load based on vibration spectrum[J]. Information & Control, 2012, 41(1): 123-128. | |
2 | 王恒, 贾民平, 陈左亮. 基于LS-SVM和机理模型的球磨机料位软测量[J]. 电力自动化设备, 2010, 30(7): 92-95. |
WangH, JiaM P, ChenZ L. Soft measurement based on mechanism model and LS-SVM for fill level of ball mill[J]. Electric Power Automation Equipment, 2010, 30(7): 92-95. | |
3 | 汤健. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京: 国防工业出版社, 2015: 25-28. |
TangJ. Soft Sensing of Rotating Machinery Equipment Load Based on Spectrum Data Drive[M]. Beijing: National Defense Industry Press, 2015: 25-28. | |
4 | ZhouP, ChaiT Y, WangH. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4): 730-743. |
5 | XieS W, XieY F, LiF B, et al. Optimal setting and control for iron removal process based on adaptive neural network soft-sensor[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, (99): 1-13. |
6 | 程瑞辉, 阎高伟. 基于OBE-ELM的球磨机料位软测量[J]. 中北大学学报(自然科学版), 2017, 38(5): 574-579. |
ChengR H, YanG W. Soft sensor for ball mill fill level based on OBE-ELM model[J]. Journal of North University of China (Natural Science Edition), 2017, 38(5): 574-579. | |
7 | TangJ, WangD H, ChaiT Y. Predicting mill load using partial least squares and extreme learning machines[J]. Soft Computing, 2012, 16(9): 1585-1594. |
8 | XiaL Y, WangH N, ZhuP F, et al. Soft-sensor modeling method using kernel principal component analysis bagging ensemble neural network[J]. Information and Control, 2015, 44(5): 519-524. |
9 | 牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879. |
NiuD P, LiuY Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm[J]. CIESC Journal, 2017, 68(7): 2873-2879. | |
10 | YaoL, GeZ Q. Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
11 | 汤健, 柴天佑, 丛秋梅, 等. 基于EMD和选择性集成学习算法的磨机负荷参数软测量[J]. 自动化学报, 2014, 40(9): 1853-1866. |
TangJ, ChaiT Y, CongQ M, et al. Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm[J]. Acta Automatica Sinica, 2014, 40(9): 1853-1866. | |
12 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
LiuJ, ShaoC, ZhuL. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
13 | GrubingerT, ChasparisG C, NatschlaegerT. Generalized online transfer learning for climate control in residential buildings[J]. Energy and Buildings, 2017, 139: 63-71. |
14 | YanK, ZhangD. Calibration transfer and drift compensation of e-noses via coupled task learning[J]. Sensors and Actuators B Chemical, 2016, 225: 288-297. |
15 | PanS J, YangQ. A survey on transfer learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10): 1345-1359. |
16 | 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. |
ZhuangF Z, LuoP, HeQ, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26:26-39. | |
17 | KanM, WuJ, ShanS, et al. Domain adaptation for face recognition: targetize source domain bridged by common subspace[J]. International Journal of Computer Vision, 2014, 109(1/2):94-109. |
18 | ZhuangF Z, LuoP, ShenZ Y, et al. Collaborative dual-PLSA: mining distinction and commonality across multiple domains for text classification[C]//Proceedings of the 19th ACM Conference on Information and Knowledge Management. Toronto, Canada: ACM, 2010: 359-368. |
19 | LongM S, WangJ M, DingG G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE, 2014: 1410-1417. |
20 | LongM S, WangJ M, DingG G, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805-1818. |
21 | LongM S, WangJ M, DingG G, et al. Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089. |
22 | LongM, WangJ, DingG, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2200-2207. |
23 | PanS J, TsangI W, KwokJ T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. |
24 | KingmaD P, WellingM. Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations. Ithaca, NY: arXiv:1312.6114v10 [stat.ML], 2014. |
25 | BodinE, MalikI, EkC H, et al. Nonparametric inference for auto-encoding variational Bayes[J]. arXiv:1712.06536v1 [stat.ML], 2017. () |
26 | 恩擎. 基于图像自编码的神经网络特征学习研究及应用[D]. 北京: 北京工业大学, 2017. |
EnQ. Research and application on autoencoder based feature learning model of neural network[D]. Beijing: Beijing University of Technology, 2017. | |
27 | 虢齐. 基于深度学习的图像生成技术研究与应用[D]. 成都: 电子科技大学, 2017. |
GuoQ. Research and application of image generation based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
28 | 王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1867. |
WangS X, ChenH W, LiX P, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1867. | |
29 | SinaiS, KelsicE, ChurchG M, et al. Variational auto-encoding of protein sequences[J]. arXiv: 1712.03346v3 [q-bio.QM], 2017. () |
30 | HsuC C, HwangH T, WuY C, et al. Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks[C]//INTERSPEECH. Stockholm, Sweden: ISCA. 2017: 3364-3368. |
31 | WalkerJ, DoerschC, GuptaA, et al. An uncertain future: forecasting from static images using variational autoencoders[C]//14th European Conference on Computer Vision Proceedings. Part VII.Amsterdam, Netherlands, 2016. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[5] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[6] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[7] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[8] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[9] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[10] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[11] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[14] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[15] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||