CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2589-2602.DOI: 10.11949/0438-1157.20241233
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Changqiu HE1(
), Jiameng TIAN1(
), Yiqi CHEN1, Yuchen ZHU1, Xin LIU1, Hai WANG1, Zhentao WANG1, Junfeng WANG2, Zhifu ZHOU3, Bin CHEN3
Received:2024-11-01
Revised:2025-01-02
Online:2025-07-09
Published:2025-06-25
Contact:
Jiameng TIAN
何昌秋1(
), 田加猛1(
), 陈义齐1, 朱宇琛1, 刘鑫1, 王海1, 王贞涛1, 王军锋2, 周致富3, 陈斌3
通讯作者:
田加猛
作者简介:何昌秋(1999—),男,硕士研究生,354422874@qq.com
基金资助:CLC Number:
Changqiu HE, Jiameng TIAN, Yiqi CHEN, Yuchen ZHU, Xin LIU, Hai WANG, Zhentao WANG, Junfeng WANG, Zhifu ZHOU, Bin CHEN. Synergistic heat transfer enhancement characteristics due to electric field and macro-structured surface during thin film boiling[J]. CIESC Journal, 2025, 76(6): 2589-2602.
何昌秋, 田加猛, 陈义齐, 朱宇琛, 刘鑫, 王海, 王贞涛, 王军锋, 周致富, 陈斌. 电场-宏观结构表面协同强化薄液膜沸腾传热特性[J]. 化工学报, 2025, 76(6): 2589-2602.
Add to citation manager EndNote|Ris|BibTeX
| 物理性质 | 数值 |
|---|---|
| 密度/(g/cm3) | 0.79 |
| 热导率/(W/(m·K)) | 0.17 |
| 黏度/(mPa·s) | 1.1 |
| 表面张力/(N/m) | 21.97×10-3 |
| 电导率/(S/m) | 5.10×10-5 |
| 相对介电常数 | 25.30 |
Table 1 Physical properties of ethanol (20℃, 1 atm)[25-26]
| 物理性质 | 数值 |
|---|---|
| 密度/(g/cm3) | 0.79 |
| 热导率/(W/(m·K)) | 0.17 |
| 黏度/(mPa·s) | 1.1 |
| 表面张力/(N/m) | 21.97×10-3 |
| 电导率/(S/m) | 5.10×10-5 |
| 相对介电常数 | 25.30 |
| 表面类型 | 肋数/个 | 基底面积/mm2 | 结构面积/mm2 | 总面积Atot/mm2 |
|---|---|---|---|---|
| s2.5-h0.5 | 16 | 96 | 20 | 116 |
| s2.5-h1.5 | 16 | 96 | 52 | 148 |
| s2.5-h2.5 | 16 | 96 | 84 | 180 |
| s1.5-h0.5 | 36 | 91 | 45 | 136 |
| s1.5-h1.5 | 36 | 91 | 117 | 208 |
| s1.5-h2.5 | 36 | 91 | 189 | 280 |
Table 2 Cubic-pin-fin structural parameters
| 表面类型 | 肋数/个 | 基底面积/mm2 | 结构面积/mm2 | 总面积Atot/mm2 |
|---|---|---|---|---|
| s2.5-h0.5 | 16 | 96 | 20 | 116 |
| s2.5-h1.5 | 16 | 96 | 52 | 148 |
| s2.5-h2.5 | 16 | 96 | 84 | 180 |
| s1.5-h0.5 | 36 | 91 | 45 | 136 |
| s1.5-h1.5 | 36 | 91 | 117 | 208 |
| s1.5-h2.5 | 36 | 91 | 189 | 280 |
| [1] | Kim J. Spray cooling heat transfer: the state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 753-767. |
| [2] | Smakulski P, Pietrowicz S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646. |
| [3] | Xia Y K, Gao X, Li R. Management of surface cooling non-uniformity in spray cooling[J]. Applied Thermal Engineering, 2020, 180: 115819. |
| [4] | Silk E A, Kim J, Kiger K. Spray cooling of enhanced surfaces: impact of structured surface geometry and spray axis inclination[J]. International Journal of Heat and Mass Transfer, 2006, 49(25/26): 4910-4920. |
| [5] | Zhang W, Wang Z L. Heat transfer enhancement of spray cooling in straight-grooved surfaces in the non-boiling regime[J]. Experimental Thermal and Fluid Science, 2015, 69: 38-44. |
| [6] | Zhang Z, Jiang P X, Christopher D M, et al. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 80: 26-37. |
| [7] | Zhou F, Zhou J Z, Li X F, et al. Enhanced capillary-driven thin film boiling on cost-effective gradient wire meshes for high-heat-flux applications[J]. Experimental Thermal and Fluid Science, 2023, 149: 111018. |
| [8] | 王跃社, 周芳德, 本田博司. 基于微肋管的微沟槽表面薄液膜沸腾理论模型[J]. 工程热物理学报, 2004, 25(3): 445-447. |
| Wang Y S, Zhou F D, Honda H. Theoretical model of thin film evaporation heat transfer based on grooved surface of micro-fin tubes[J]. Journal of Engineering Thermophysics, 2004, 25(3): 445-447. | |
| [9] | Chen L, Jin F C, Li J H, et al. Hybrid model of thin film boiling: insights into the unique behavior and ultrahigh heat flux[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121702. |
| [10] | Feng X, Bryan J E. Application of electrohydrodynamic atomization to two-phase impingement heat transfer[J]. Journal of Heat Transfer, 2008, 130(7): 072202. |
| [11] | Xu H J, Wang J F, Tian J M, et al. Electrohydrodynamic disintegration of dielectric fluid blended with ethanol[J]. Physics of Fluids, 2021, 33(6): 062107. |
| [12] | Zhukov V I, Pavlenko A N. Heat transfer and critical phenomena during evaporation and boiling in a thin horizontal liquid layer at low pressures[J]. International Journal of Heat and Mass Transfer, 2018, 117: 978-990. |
| [13] | Yiapanis G, Christofferson A J, Plazzer M, et al. Molecular mechanism of stabilization of thin films for improved water evaporation protection[J]. Langmuir, 2013, 29(47): 14451-14459. |
| [14] | Yan C J, Ma H B. Analytical solutions of heat transfer and film thickness in thin-film evaporation[J]. Journal of Heat Transfer, 2013, 135(3): 031501. |
| [15] | Zhukov V I, Pavlenko A N, Shvetsov D A. The effect of pressure on heat transfer at evaporation/boiling in horizontal liquid layers of various heights on a microstructured surface produced by 3D laser printing[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120488. |
| [16] | Wen R F, Liu W, Ma X H, et al. Coupling droplets/bubbles with a liquid film for enhancing phase-change heat transfer[J]. iScience, 2021, 24(6): 102531. |
| [17] | Liu B, Garivalis A I, Cao Z Z, et al. Effects of electric field on pool boiling heat transfer over microstructured surfaces under different liquid subcoolings[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122154. |
| [18] | Chang H Z, Liu B, Li Q, et al. Effects of electric field on pool boiling heat transfer over composite microstructured surfaces with microcavities on micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2023, 205: 123893. |
| [19] | Garivalis A I, Manfredini G, Saccone G, et al. Critical heat flux enhancement in microgravity conditions coupling microstructured surfaces and electrostatic field[J]. NPJ Microgravity, 2021, 7(1): 37. |
| [20] | Xu R N, Wang G Y, Jiang P X. Spray cooling on enhanced surfaces: a review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144(1): 010802. |
| [21] | Dixit A K, Kumar R, Das A K. Investigation of film boiling at a liquid-liquid contact[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123234. |
| [22] | Inbaoli A, Sujith Kumar C S, Jayaraj S. A review on techniques to alter the bubble dynamics in pool boiling[J]. Applied Thermal Engineering, 2022, 214: 118805. |
| [23] | Saneie N, Kulkarni V, Treska B, et al. Microbubble dynamics and heat transfer in boiling droplets[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121413. |
| [24] | Tian J M, Wang J F, Chen B. Numerical investigation on isolated moving charged droplet evaporation in electrostatic field with highly volatile R134a[C]//International Conference on Liquid Atomization and Spray Systems. 2021. |
| [25] | Gan Y H, Chen N G, Zheng X H, et al. Electric field and spraying characteristics of electrospray using concave ground electrode[J]. Journal of Electrostatics, 2022, 115: 103662. |
| [26] | Xu H J, Wang J F, Li B, et al. Effect of spray modes on electrospray cooling heat transfer of ethanol[J]. Applied Thermal Engineering, 2021, 189: 116757. |
| [27] | Tian J M, He C Q, Chen Y Q, et al. Experimental study on combined heat transfer enhancement due to macro-structured surface and electric field during electrospray cooling[J]. International Journal of Heat and Mass Transfer, 2024, 220: 125015. |
| [28] | Zhao X, Zhang H F, Zhang B, et al. Experimental investigation of the mechanism of isolated liquid film flow in spray cooling[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122904. |
| [29] | Kline S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
| [30] | Jia W C, Qiu H H. Experimental investigation of droplet dynamics and heat transfer in spray cooling[J]. Experimental Thermal and Fluid Science, 2003, 27(7): 829-838. |
| [31] | Pandey V, Biswas G, Dalal A. Effect of superheat and electric field on saturated film boiling[J]. Physics of Fluids, 2016, 28(5): 052102. |
| [32] | Patel D, Vengadesan S. Electrohydrodynamic effects on the bubble ascent in quiescent liquid using charge conservation approach[J]. Physics of Fluids, 2023, 35(11): 112104. |
| [33] | Ha J W, Yang S M. Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field[J]. Journal of Fluid Mechanics, 2000, 405: 131-156. |
| [34] | Wang S, Hernan B J, Chen C L. Towards enhanced bubble detachment within a thin liquid film by electrowetting with voltage modulation[J]. Physics of Fluids, 2018, 30(6): 062102. |
| [35] | Jiang M N, Wang Y, Liu F Y, et al. Inhibiting the Leidenfrost effect above 1000℃ for sustained thermal cooling[J]. Nature, 2022, 601(7894): 568-572. |
| [36] | Adamson A W. Physical Chemistry of Surfaces[M]. 2nd ed. New York: Interscience Publishers, 1967: 192-204. |
| [37] | Chen Y J, Guo J, Liu X L, et al. Experiment and prediction model study on pool boiling heat transfer of water in the electric field with periodically changing direction[J]. International Journal of Multiphase Flow, 2022, 150: 104027. |
| [38] | Patel V K, Seyed Yagoobi J. Combined dielectrophoretic and electrohydrodynamic conduction pumping for enhancement of liquid film flow boiling[J]. Journal of Heat Transfer, 2017, 139(6): 061502. |
| [39] | Liang G T, Mudawar I. Review of spray cooling(part 1): Single-phase and nucleate boiling regimes, and critical heat flux[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1174-1205. |
| [40] | Liang G T, Mudawar I. Review of spray cooling(part 2): High temperature boiling regimes and quenching applications[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1206-1222. |
| [1] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [2] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [3] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [4] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [5] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [6] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [7] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [8] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [9] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [10] | Xianyu ZHU, Qianxing SUN, Shoujun ZHOU, Yongsheng TIAN, Qinpeng SUN. Experimental study on battery thermal management of composite phase change materials coupled with micro grooves flat heat pipes [J]. CIESC Journal, 2025, 76(6): 2652-2666. |
| [11] | Xing BAO, Xueyan GUO. Effects of cylindrical particle structure modification on the flow and heat transfer characteristics in packed beds [J]. CIESC Journal, 2025, 76(6): 2603-2615. |
| [12] | Xiaotian MI, Hongchen LIU, Kejun WANG, Wenna TANG, Yongwei XU, Mei YANG. Mass transfer study of CO2 absorption by TETA/DEEA biphasic absorbent in the microchannel [J]. CIESC Journal, 2025, 76(6): 2667-2677. |
| [13] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [14] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
| [15] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||