CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2652-2666.DOI: 10.11949/0438-1157.20241105
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xianyu ZHU1(), Qianxing SUN1, Shoujun ZHOU1, Yongsheng TIAN1,2(
), Qinpeng SUN2
Received:
2024-10-07
Revised:
2024-11-26
Online:
2025-07-09
Published:
2025-06-25
Contact:
Yongsheng TIAN
朱先宇1(), 孙钱行1, 周守军1, 田永生1,2(
), 孙钦鹏2
通讯作者:
田永生
作者简介:
朱先宇(1999—),男,硕士研究生,2022035203@stu.sdjzu.edu.cn
基金资助:
CLC Number:
Xianyu ZHU, Qianxing SUN, Shoujun ZHOU, Yongsheng TIAN, Qinpeng SUN. Experimental study on battery thermal management of composite phase change materials coupled with micro grooves flat heat pipes[J]. CIESC Journal, 2025, 76(6): 2652-2666.
朱先宇, 孙钱行, 周守军, 田永生, 孙钦鹏. 复合相变材料耦合微槽平板热管的电池热管理实验研究[J]. 化工学报, 2025, 76(6): 2652-2666.
项目 | 规格 |
---|---|
电池类型 | 三元锂离子电池 |
标称容量 | 50 Ah |
内阻 | 0.8 mΩ |
最大充电电流 | 1 C(连续) |
最大放电电流 | 5 C(连续) |
电池尺寸 | 148 mm×27 mm×92 mm |
Table 1 Parameters of lithium-ion batteries
项目 | 规格 |
---|---|
电池类型 | 三元锂离子电池 |
标称容量 | 50 Ah |
内阻 | 0.8 mΩ |
最大充电电流 | 1 C(连续) |
最大放电电流 | 5 C(连续) |
电池尺寸 | 148 mm×27 mm×92 mm |
放电倍率 | 缓慢上升/平坦期 | 快速上升期 | ||
---|---|---|---|---|
时间/s | 功率/电压 | 时间/s | 功率/电压 | |
0.5C | 0~4800 | 0.4 W/ 11.36 V | 4800~7200 | 1.9 W/ 25 V |
1C | 0~2400 | 1.4 W/ 21.25 V | 2400~3600 | 5 W/ 40 V |
2C | 0~1200 | 6.2 W/ 44.73 V | 1200~1800 | 11.2 W/ 60 V |
3C | — | — | 0~1200 | 14.5 W/ 68.4 V |
4C | — | — | 0~900 | 26.3 W/ 92.12 V |
5C | — | — | 0~720 | 41.5 W/ 115.72 V |
Table 2 Power and voltage of the electric heating rod
放电倍率 | 缓慢上升/平坦期 | 快速上升期 | ||
---|---|---|---|---|
时间/s | 功率/电压 | 时间/s | 功率/电压 | |
0.5C | 0~4800 | 0.4 W/ 11.36 V | 4800~7200 | 1.9 W/ 25 V |
1C | 0~2400 | 1.4 W/ 21.25 V | 2400~3600 | 5 W/ 40 V |
2C | 0~1200 | 6.2 W/ 44.73 V | 1200~1800 | 11.2 W/ 60 V |
3C | — | — | 0~1200 | 14.5 W/ 68.4 V |
4C | — | — | 0~900 | 26.3 W/ 92.12 V |
5C | — | — | 0~720 | 41.5 W/ 115.72 V |
测试项目 | 参数 |
---|---|
工质 | 丙酮混合物 |
密度/(kg/m3) | 852 |
热导率/(W/(m·K)) | 0.4795 |
热扩散率/(mm2/s) | 2.352 |
比热容/(J/(kg·K)) | 2409.62 |
蒸发温度/℃ | 43 |
管内充液率/% | 25 |
Table 3 Thermal physical property parameters of FHP working medium
测试项目 | 参数 |
---|---|
工质 | 丙酮混合物 |
密度/(kg/m3) | 852 |
热导率/(W/(m·K)) | 0.4795 |
热扩散率/(mm2/s) | 2.352 |
比热容/(J/(kg·K)) | 2409.62 |
蒸发温度/℃ | 43 |
管内充液率/% | 25 |
测试项目 | 石蜡/膨胀石墨的参数 |
---|---|
密度/(kg/m3) | 1016 |
热导率/(W/(m·K)) | 4.13 |
热扩散率/(mm2/s) | 0.547 |
比热容/(J/(kg·K)) | 2053 |
相变潜热/(J/g) | 156.03 |
相变温度/℃ | 38.14~42.84 |
尺寸/ mm×mm×mm | 70×50×27 |
Table 4 Thermal physical property and size parameters of CPCM
测试项目 | 石蜡/膨胀石墨的参数 |
---|---|
密度/(kg/m3) | 1016 |
热导率/(W/(m·K)) | 4.13 |
热扩散率/(mm2/s) | 0.547 |
比热容/(J/(kg·K)) | 2053 |
相变潜热/(J/g) | 156.03 |
相变温度/℃ | 38.14~42.84 |
尺寸/ mm×mm×mm | 70×50×27 |
名称 | 项目 | 参数 |
---|---|---|
实验箱 | 箱体尺寸 | 480 mm×300 mm×120(3) mm |
风道尺寸 | 120 mm×120 mm | |
轴流风机 | 型号 | 德力西G12038HA2 |
尺寸 | 120 mm×120 mm×38 mm | |
额定电压 | 220 V | |
额定功率 | 16 W | |
最大风量 | 93 CFM | |
直流稳压电源 | 型号 | 迈胜MP2205D |
输出电压 | 0~220 V | |
输出电流 | 0~5 A | |
精度 | ± 0.1% | |
温度数据采集仪 | 型号 | Fluke 2638A/60 |
测温量程 | -270~400℃ (T型) | |
准确度 | ± 0.15℃ (T型) | |
T型热电偶 | 测量范围 | -200~350℃ |
精度 | ± 0.5℃ |
Table 5 Parameters of the experimental equipment
名称 | 项目 | 参数 |
---|---|---|
实验箱 | 箱体尺寸 | 480 mm×300 mm×120(3) mm |
风道尺寸 | 120 mm×120 mm | |
轴流风机 | 型号 | 德力西G12038HA2 |
尺寸 | 120 mm×120 mm×38 mm | |
额定电压 | 220 V | |
额定功率 | 16 W | |
最大风量 | 93 CFM | |
直流稳压电源 | 型号 | 迈胜MP2205D |
输出电压 | 0~220 V | |
输出电流 | 0~5 A | |
精度 | ± 0.1% | |
温度数据采集仪 | 型号 | Fluke 2638A/60 |
测温量程 | -270~400℃ (T型) | |
准确度 | ± 0.15℃ (T型) | |
T型热电偶 | 测量范围 | -200~350℃ |
精度 | ± 0.5℃ |
工况 | 简称 | 描述 |
---|---|---|
自然对流 | NC | 模拟电池放置在实验箱中,电池间距5 mm放置,仅通过空气自然对流散热 |
强制风冷 | FC | 模拟电池放置在实验箱风道中,电池间距5 mm放置,开启风机,电池受到3 m/s的强制对流 |
热管自然冷却 | FHP-NC | 模拟电池放置在实验箱中,两侧与热管蒸发段接触,设置隔离板隔绝风道和箱内空间,减少外部环境的影响,热管冷凝段穿过隔离板在风道中自然对流散热 |
热管强制风冷 | FHP-FC | 类比热管自然冷却,开启风机,热管冷凝段在风道中受到3 m/s的强制对流 |
相变材料-热管冷却 | CPCM-FHP | 类比热管自然冷却,在热管冷凝段间填装相变材料 |
Table 6 Description of experimental conditions
工况 | 简称 | 描述 |
---|---|---|
自然对流 | NC | 模拟电池放置在实验箱中,电池间距5 mm放置,仅通过空气自然对流散热 |
强制风冷 | FC | 模拟电池放置在实验箱风道中,电池间距5 mm放置,开启风机,电池受到3 m/s的强制对流 |
热管自然冷却 | FHP-NC | 模拟电池放置在实验箱中,两侧与热管蒸发段接触,设置隔离板隔绝风道和箱内空间,减少外部环境的影响,热管冷凝段穿过隔离板在风道中自然对流散热 |
热管强制风冷 | FHP-FC | 类比热管自然冷却,开启风机,热管冷凝段在风道中受到3 m/s的强制对流 |
相变材料-热管冷却 | CPCM-FHP | 类比热管自然冷却,在热管冷凝段间填装相变材料 |
参数 | 测量仪器 | 误差 |
---|---|---|
模拟电池的表面温度 | T型热电偶、温度数据采集仪 | ±0.522℃ |
CPCM表面温度 | T型热电偶、温度数据采集仪 | ±0.522℃ |
电加热棒控制电压 | 直流稳压电源 | ±0.22 V |
Table 7 Experimental error analysis
参数 | 测量仪器 | 误差 |
---|---|---|
模拟电池的表面温度 | T型热电偶、温度数据采集仪 | ±0.522℃ |
CPCM表面温度 | T型热电偶、温度数据采集仪 | ±0.522℃ |
电加热棒控制电压 | 直流稳压电源 | ±0.22 V |
[1] | An Z J, Jia L, Ding Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26(5): 391-412. |
[2] | Ritchie A, Howard W. Recent developments and likely advances in lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 809-812. |
[3] | Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
[4] | Liu J L, Duan Q L, Ma M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. |
[5] | Ling Z Y, Zhang Z G, Shi G Q, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 427-438. |
[6] | Li M, Ma S M, Jin H, et al. Performance analysis of liquid cooling battery thermal management system in different cooling cases[J]. Journal of Energy Storage, 2023, 72: 108651. |
[7] | Hong S H, Zhang X Q, Chen K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1204-1212. |
[8] | Xie J H, Ge Z J, Zang M Y, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593. |
[9] | Chen K, Wang S F, Song M X, et al. Structure optimization of parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2017, 111: 943-952. |
[10] | Zhang T S, Gao Q, Wang G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662. |
[11] | Panchal S, Dincer I, Agelin-Chaab M, et al. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1093-1102. |
[12] | Zhao J T, Rao Z H, Li Y M. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103: 157-165. |
[13] | Yu Z P, Zhang J K, Pan W G. A review of battery thermal management systems about heat pipe and phase change materials[J]. Journal of Energy Storage, 2023, 62: 106827. |
[14] | Cheng J P, Shuai S L, Zhao R C, et al. Numerical analysis of heat-pipe-based battery thermal management system for prismatic lithium-ion batteries[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(8): 081008. |
[15] | 甘云华, 王建钦, 梁嘉林. 基于热管的圆柱形电池包冷却性能分析[J]. 化工学报, 2018, 69(5): 1964-1971. |
Gan Y H, Wang J Q, Liang J L. Cooling performance of cylindrical battery pack based on thermal management system with heat pipe[J]. CIESC Journal, 2018, 69(5): 1964-1971. | |
[16] | 张剑辉, 钱昊, 吕喆, 等. 储能系统集成技术与工程实践[M]. 北京: 化学工业出版社, 2023. |
Zhang J H, Qian H, Lyu Z, et al. Energy Storage System Integration Technology and Engineering Practice[M]. Beijing: Chemical Industry Press, 2023. | |
[17] | Kenisarin M, Mahkamov K, Kahwash F, et al. Enhancing thermal conductivity of paraffin wax 53—57 degrees C using expanded graphite[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion, 2019, 200: 110026. |
[18] | 施尚, 余建祖, 陈梦东, 等. 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683. |
Shi S, Yu J Z, Chen M D, et al. Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7): 2678-2683. | |
[19] | 陈华富. 基于复合相变材料的锂离子电池低温热管理系统性能及结构优化研究[D]. 兰州: 兰州理工大学, 2023. |
Chen H F. Performance and structural optimization of low-temperature thermal management system for lithium-ion batteries based on composite phase change materials[D]. Lanzhou: Lanzhou University of Technology, 2023. | |
[20] | 孙玥, 张冠华, 陈凯盛, 等. 基于石蜡/月桂酸/膨胀石墨的软包锂离子电池控温性能[J]. 新能源进展, 2023, 11(5): 457-463. |
Sun Y, Zhang G H, Chen K S, et al. Temperature control performance of soft-coated lithium-ion battery based on paraffin/lauric acid/expanded graphite[J]. Advances in New and Renewable Energy, 2023, 11(5): 457-463. | |
[21] | Zhao J T, Lv P Z, Rao Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82: 182-188. |
[22] | Leng Z Y, Yuan Y P, Cao X L, et al. Heat pipe/phase change material thermal management of Li-ion power battery packs: a numerical study on coupled heat transfer performance[J]. Energy, 2022, 240: 122754. |
[23] | 杜江龙, 杨雯棋, 黄凯, 等. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
Du J L, Yang W Q, Huang K, et al. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 674-689. | |
[24] | Zhang W C, Qiu J Y, Yin X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
[25] | Abbas S, Ramadan Z, Park C W. Thermal performance analysis of compact-type simulative battery module with paraffin as phase-change material and flat plate heat pipe[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121269. |
[26] | 王烨. 基于平板热管-相变材料复合传热系统的动力电池热管理研究[D]. 大连: 大连理工大学, 2021. |
Wang Y. Study on a composite power battery thermal management system based on flat heat pipe-phase change material[D]. Dalian: Dalian University of Technology, 2021. | |
[27] | Burkitbayev A, Weragoda D M, Ciampa F, et al. A numerical and experimental investigation on a gravity-assisted heat-pipe-based battery thermal management system for a cylindrical battery[J]. Batteries, 2023, 9(9): 456. |
[28] | 陈万宇, 毛征宇, 常利军, 等. 方型锂电池模组热特性实验与仿真研究[J]. 重庆理工大学学报, 2023, 37(13): 184-191. |
Chen W Y, Mao Z Y, Chang L J, et al. Experimental and simulation research on thermal characteristic of square lithium battery modules[J]. Journal of Chongqing University of Technology, 2023, 37(13): 184-191. | |
[29] | Chang L J, Chen W Y, Mao Z Y, et al. Experimental study on the effect of ambient temperature and discharge rate on the temperature field of prismatic batteries[J]. Journal of Energy Storage, 2023, 59: 106577. |
[30] | 吴菊红. 应用于微小型热管的斜齿型微沟槽吸液芯研究[D]. 广州: 华南理工大学, 2012. |
Wu J H. Study of a novel skew-grooved wick structure for micro heat pipe[D]. Guangzhou: South China University of Technology, 2012. | |
[31] | 王昊. LED微槽群平板热管散热器研究[D]. 大连: 大连理工大学, 2009. |
Wang H. Investigation on LED microgrooved flat heat pipe[D]. Dalian: Dalian University of Technology, 2009. | |
[32] | 范春利, 曲伟, 孙丰瑞, 等. 重力对微槽平板热管传热性能的影响[J]. 热能动力工程, 2004, 19(1): 33-37, 104. |
Fan C L, Qu W, Sun F R, et al. The influence of gravitation on the heat transfer performance of micro-grooved flat-plate heat pipes[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(1): 33-37, 104. |
[1] | Shengmei ZHANG, Ming LI, Ying ZHANG, Xi YI, Yiting YANG, Yali LIU. Effects of emulsifier and reacting temperature on characteristics of phase change microcapsules [J]. CIESC Journal, 2025, 76(S1): 444-452. |
[2] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
[3] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
[4] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
[5] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
[6] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
[7] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
[8] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
[9] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
[10] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
[11] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
[12] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
[13] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
[14] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
[15] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||