CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3416-3425.DOI: 10.11949/0438-1157.20241379
• Intelligent process engineering • Previous Articles Next Articles
Fang WANG1,2,3(
), Suxia MA1(
), Ying TIAN4, Zhongyuan LIU5
Received:2024-11-28
Revised:2024-12-29
Online:2025-08-13
Published:2025-07-25
Contact:
Suxia MA
通讯作者:
马素霞
作者简介:王芳(1989—),女,博士,讲师,wangfang05@tyut.edu.cn
基金资助:CLC Number:
Fang WANG, Suxia MA, Ying TIAN, Zhongyuan LIU. NO x emission prediction method of CFB unit based on 1D mechanism model dynamicly corrected with LSTM[J]. CIESC Journal, 2025, 76(7): 3416-3425.
王芳, 马素霞, 田营, 刘众元. 基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法[J]. 化工学报, 2025, 76(7): 3416-3425.
Add to citation manager EndNote|Ris|BibTeX
| 化学反应 | 反应速率 | 系数 |
|---|---|---|
Table 1 Chemical reactions and reaction rates
| 化学反应 | 反应速率 | 系数 |
|---|---|---|
| 模型 | RMSE | R2 | MAE |
|---|---|---|---|
| 1D model | 15.70 | 0.94 | 12.24 |
| LSTM model | 12.80 | 0.96 | 9.88 |
| 1D-LSTM model | 10.76 | 0.97 | 8.47 |
Table 2 Prediction performance comparison of three models
| 模型 | RMSE | R2 | MAE |
|---|---|---|---|
| 1D model | 15.70 | 0.94 | 12.24 |
| LSTM model | 12.80 | 0.96 | 9.88 |
| 1D-LSTM model | 10.76 | 0.97 | 8.47 |
| 模型 | RMSE | R2 | MAE |
|---|---|---|---|
| BP | 13.96 | 0.95 | 11.74 |
| ELM | 13.17 | 0.95 | 11.05 |
| 1D-BP | 13.25 | 0.95 | 10.95 |
| 1D-ELM | 12.12 | 0.96 | 9.88 |
| 1D-LSTM | 10.76 | 0.97 | 8.47 |
Table 3 Prediction performance comparison of five models
| 模型 | RMSE | R2 | MAE |
|---|---|---|---|
| BP | 13.96 | 0.95 | 11.74 |
| ELM | 13.17 | 0.95 | 11.05 |
| 1D-BP | 13.25 | 0.95 | 10.95 |
| 1D-ELM | 12.12 | 0.96 | 9.88 |
| 1D-LSTM | 10.76 | 0.97 | 8.47 |
| [1] | Wang X W, Liu W J, Wang Y N, et al. A hybrid NO x emission prediction model based on CEEMDAN and AM-LSTM[J]. Fuel, 2022, 310: 122486. |
| [2] | Adams D, Oh D H, Kim D W, et al. Prediction of SO x -NO x emission from a coal-fired CFB power plant with machine learning: plant data learned by deep neural network and least square support vector machine[J]. Journal of Cleaner Production, 2020, 270: 122310. |
| [3] | Tan P, He B, Zhang C, et al. Dynamic modeling of NO x emission in a 660 MW coal-fired boiler with long short-term memory[J]. Energy, 2019, 176: 429-436. |
| [4] | Yang G T, Wang Y N, Li X L. Prediction of the NO x emissions from thermal power plant using long-short term memory neural network[J]. Energy, 2020, 192: 116597. |
| [5] | 任少君, 朱保宇, 翁琪航, 等. 基于物理信息神经网络的燃煤锅炉NO x 排放浓度预测方法[J]. 中国电机工程学报, 2024, 44(20): 8157-8166. |
| Ren S J, Zhu B Y, Weng Q H, et al. Forecasting method for NO x emission in coal fired boiler based on physics-informed neural network[J]. Proceedings of the CSEE, 2024, 44(20): 8157-8165. | |
| [6] | Azodi C B, Tang J L, Shiu S H. Opening the black box: interpretable machine learning for geneticists[J]. Trends in Genetics, 2020, 36(6): 442-455. |
| [7] | 赵小军, 王学斌, 孙锦余, 等. 300MW电站煤粉锅炉耦合掺烧生物质的CFD数值模拟[J]. 洁净煤技术, 2022, 28(3): 56-64. |
| Zhao X J, Wang X B, Sun J Y, et al. Numerical simulation of biomass coupled by pulverized coal boiler in 300MW power station[J]. Clean Coal Technology, 2022, 28(3): 56-64. | |
| [8] | 李佳伟, 陈智超, 张旭阳, 等. 预燃室燃烧器煤气化细灰混烧特性和数值模拟研究[J]. 工程热物理学报, 2022, 43(6): 1675-1683. |
| Li J W, Chen Z C, Zhang X Y, et al. Study on co-combustion characteristics and numerical simulation of coal gasification fine ash in precombustion chamber burner[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1675-1683. | |
| [9] | Wang S, Luo K, Yang S L, et al. LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB[J]. Chemical Engineering Journal, 2017, 313: 858-872. |
| [10] | Tu Q Y, Wang H G, Ocone R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors—a review[J]. Powder Technology, 2022, 399: 117181. |
| [11] | Muhammad A, Zhang N, Wang W. CFD simulations of a full-loop CFB reactor using coarse-grained Eulerian-Lagrangian dense discrete phase model: effects of modeling parameters[J]. Powder Technology, 2019, 354: 615-629. |
| [12] | Bandara J C, Jayarathna C, Thapa R, et al. Loop seals in circulating fluidized beds—review and parametric studies using CPFD simulation[J]. Chemical Engineering Science, 2020, 227: 115917. |
| [13] | Li S Y, Shen Y S. Multi-fluid modelling of hydrodynamics in a dual circulating fluidized bed[J]. Advanced Powder Technology, 2020, 31(7): 2778-2791. |
| [14] | Ke X W, Engblom M, Yang H R, et al. Prediction and minimization of NO x emission in a circulating fluidized bed combustor: a comprehensive mathematical model for CFB combustion[J]. Fuel, 2022, 309: 122133. |
| [15] | 马达夫, 何翔, 吕为智, 等. 660 MW超临界W火焰锅炉低负荷稳燃特性研究[J]. 工程热物理学报, 2022, 43(1): 259-266. |
| Ma D F, He X, Lyu W Z, et al. Investigations of combustion stability in a 660 MW supercritical W-flame boiler under low load[J]. Journal of Engineering Thermophysics, 2022, 43(1): 259-266. | |
| [16] | 李政. 循环流化床锅炉通用整体数学模型、仿真与性能预测[D]. 北京: 清华大学, 1994. |
| Li Z. Modeling, simulation and performance prediction of a complete CFB boiler[D]. Beijing: Tsinghua University, 1994. | |
| [17] | 高明明, 岳光溪, 雷秀坚, 等. 循环流化床锅炉石灰石控制研究[J]. 动力工程学报, 2014, 34(10): 759-764, 777. |
| Gao M M, Yue G X, Lei X J, et al. Research on limestone control of circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering, 2014, 34(10): 759-764, 777. | |
| [18] | 单露, 张缦, 张翼, 等. 循环流化床全回路气固流动动态模型及分析[J]. 中国电机工程学报, 2017, 37(S1): 98-104. |
| Shan L, Zhang M, Zhang Y, et al. Dynamic model establishment and analysis on gas-solid flow in CFB whole loop[J]. Proceedings of the CSEE, 2017, 37(S1): 98-104. | |
| [19] | Yan J, Lu X F, Wang Q H, et al. Study on the influence of secondary air on the distributions of flue gas composition at the lower part of a 600 MW supercritical CFB boiler[J]. Fuel Processing Technology, 2019, 196: 106035. |
| [20] | Kunii D. Flow modeling of fast fluidized beds[M]// Circulating Fluidized Bed Technology. 3rd ed. New York: Pergamon Press, 1991: 91-98. |
| [21] | Pallarès D, Johnsson F. Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds[J]. Progress in Energy and Combustion Science, 2006, 32(5/6): 539-569. |
| [22] | Yang H R, Yue G X, Xiao X B, et al. 1D modeling on the material balance in CFB boiler[J]. Chemical Engineering Science, 2005, 60(20): 5603-5611. |
| [23] | Nikolopoulos A, Malgarinos I, Nikolopoulos N, et al. A decoupled approach for NO x -N2O 3-D CFD modeling in CFB plants[J]. Fuel, 2014, 115: 401-415. |
| [24] | Desroches-Ducarne E, Dolignier J C, Marty E, et al. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse[J]. Fuel, 1998, 77(13): 1399-1410. |
| [25] | Kilpinen P, Kallio S, Konttinen J, et al. Char-nitrogen oxidation under fluidised bed combustion conditions: single particle studies[J]. Fuel, 2002, 81(18): 2349-2362. |
| [26] | Pan Q Q, Zheng S C, Liu X J. Deep-coupling neural network and genetic algorithm based on Sobol-PR for reactor lightweight optimization[J]. Applied Soft Computing, 2024, 167: 112458. |
| [27] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
| Yan L Q, Wang Z L. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model[J]. CIESC Journal, 2023, 74(8): 3407-3418. | |
| [28] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
| Zhang Z Q, Li H G, Shi Y L. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies[J]. CIESC Journal, 2023, 74(3): 1195-1204. | |
| [29] | Knöbig T, Werther J, L-E Å, et al. Comparison of large- and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels[J]. Fuel, 1998, 77(14): 1635-1642. |
| [30] | 颜建国, 郑书闽, 郭鹏程, 等. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657. |
| Yan J G, Zheng S M, Guo P C, et al. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657. | |
| [31] | 代学志, 熊伟丽. 基于核极限学习机的快速主动学习方法及其软测量应用[J]. 化工学报, 2020, 71(11): 5226-5236. |
| Dai X Z, Xiong W L. A fast active learning method based on kernel extreme learning machine and its application for soft sensing[J]. CIESC Journal, 2020, 71(11): 5226-5236. |
| [1] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| [2] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
| [3] | Han WANG, Chunying ZHU, Youguang MA, Taotao FU. Effect of inlet pressure and differential pressure on flow rate of gas conveying system [J]. CIESC Journal, 2025, 76(2): 596-611. |
| [4] | Yunlong HUANG, Jian XU, Tong LIU, Xintong YUAN, Qiang XU. Experimental study on temperature distribution characteristics and flow measurement of horizontal wells in gas reservoir [J]. CIESC Journal, 2025, 76(2): 612-622. |
| [5] | Zeyu ZHANG, Ping WANG, Kailun DAI, Weijia QIAN, Subhajit Roy, Ruiyang SHUAI, Antonio Ferrante. Combustion characteristics and NO production of axially staged premixed NH3/CH4 turbulent swirling flames [J]. CIESC Journal, 2025, 76(2): 835-845. |
| [6] | Xin GUO, Wenjing LI, Junfei QIAO. Prediction of effluent parameters in wastewater treatment process using self-organizing modular neural network [J]. CIESC Journal, 2024, 75(9): 3242-3254. |
| [7] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
| [8] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
| [9] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
| [10] | Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell [J]. CIESC Journal, 2024, 75(8): 2991-3001. |
| [11] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
| [12] | Chengxiu WANG, Dashan SONG, Zhihui LI, Xiao YANG, Xingying LAN, Jinsen GAO, Chunming XU. Stable flow characteristics of Geldart C particles of desulfurization ash in a loop-coupled riser [J]. CIESC Journal, 2024, 75(4): 1485-1496. |
| [13] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
| [14] | Xinzi ZHOU, Zenghui LI, Xianyang MENG, Jiangtao WU. Experimental study on viscosity of high purity air at low temperatures [J]. CIESC Journal, 2024, 75(3): 782-788. |
| [15] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||