CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2865-2874.DOI: 10.11949/0438-1157.20240220
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jialei CAO(), Liyan SUN(
), Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO
Received:
2024-02-29
Revised:
2024-04-10
Online:
2024-08-21
Published:
2024-08-25
Contact:
Liyan SUN
曹佳蕾(), 孙立岩(
), 曾德望, 尹凡, 高子翔, 肖睿
通讯作者:
孙立岩
作者简介:
曹佳蕾(2000—),女,硕士研究生,caojialei2022@163.com
基金资助:
CLC Number:
Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors[J]. CIESC Journal, 2024, 75(8): 2865-2874.
曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874.
模拟工况 | uri/(m/s) | usp/(m/s) | u1/(m/s) | u2/(m/s) | 颗粒 总质量/kg |
---|---|---|---|---|---|
1 | 7 | 0.2 | 0.4 | 0.8 | 20.8 |
2 | 7 | 0.2 | 0.4 | 0.8 | 30.9 |
3 | 5 | 0.2 | 0.4 | 0.8 | 30.9 |
4 | 9 | 0.2 | 0.4 | 0.8 | 30.9 |
5 | 7 | 4 | 0.1 | 0.2 | 30.9 |
6 | 7 | 4 | 0.1 | 0.2 | 40.9① |
Table 1 Simulation conditions
模拟工况 | uri/(m/s) | usp/(m/s) | u1/(m/s) | u2/(m/s) | 颗粒 总质量/kg |
---|---|---|---|---|---|
1 | 7 | 0.2 | 0.4 | 0.8 | 20.8 |
2 | 7 | 0.2 | 0.4 | 0.8 | 30.9 |
3 | 5 | 0.2 | 0.4 | 0.8 | 30.9 |
4 | 9 | 0.2 | 0.4 | 0.8 | 30.9 |
5 | 7 | 4 | 0.1 | 0.2 | 30.9 |
6 | 7 | 4 | 0.1 | 0.2 | 40.9① |
名称 | 参数 |
---|---|
湍流模型 | standard k-ε |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | gidaspow |
固相压力 | lun-et-al |
颗粒体积黏度 | lun-et-al |
摩擦黏度 | schaeffer |
摩擦压力 | based-ktgf |
径向分布函数 | lun-et-al |
堆积极限 | 0.63 |
Table 2 Numerical model parameter settings
名称 | 参数 |
---|---|
湍流模型 | standard k-ε |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | gidaspow |
固相压力 | lun-et-al |
颗粒体积黏度 | lun-et-al |
摩擦黏度 | schaeffer |
摩擦压力 | based-ktgf |
径向分布函数 | lun-et-al |
堆积极限 | 0.63 |
1 | 高明. 化学链制氢研究进展[J]. 能源研究与利用, 2022(6): 29-33. |
Gao M. Research progress of chemical looping hydrogen production[J]. Energy Research & Utilization, 2022(6): 29-33. | |
2 | Zheng H, Sun C, Zeng L. Research progress of chemical looping technology for low-carbon hydrogen generation[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 313-329. |
3 | Tenhumberg N, Büker K. Ecological and economic evaluation of hydrogen production by different water electrolysis technologies[J]. Chemie Ingenieur Technik, 2020, 92(10): 1586-1595. |
4 | 钟鸣. 中国绿色制氢关键技术发展现状及展望[J]. 现代化工, 2023, 43(4): 13-17. |
Zhong M. Development status and prospect of key technologies of green hydrogen production in China[J]. Modern Chemical Industry, 2023, 43(4): 13-17. | |
5 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//Efficiency and Costing. Washington, D.C.: American Chemical Society, 1983: 71-85. |
6 | He F, Li H B, Zhao Z L. Advancements in development of chemical-looping combustion: a review[J]. International Journal of Chemical Engineering, 2009: 710515. |
7 | Luo M, Yi Y, Wang S, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
8 | Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93. |
9 | Yu Z L, Yang Y Y, Yang S, et al. Iron-based oxygen carriers in chemical looping conversions: a review[J]. Carbon Resources Conversion, 2019, 2(1): 23-34. |
10 | de Vos Y, Jacobs M, van der Voort P, et al. Development of stable oxygen carrier materials for chemical looping processes—a review[J]. Catalysts, 2020, 10(8): 926. |
11 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
12 | 刘涛, 余钟亮, 李光, 等. 化学链制氢技术的研究进展与展望[J]. 应用化工, 2017, 46(11): 2215-2222. |
Liu T, Yu Z L, Li G, et al. Status and prospect of chemical looping process for hydrogen generation[J]. Applied Chemical Industry, 2017, 46(11): 2215-2222. | |
13 | Rydén M, Arjmand M. Continuous hydrogen production via the steam-iron reaction by chemical looping in a circulating fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2012, 37(6): 4843-4854. |
14 | Sridhar D, Tong A, Kim H, et al. Syngas chemical looping process: design and construction of a 25 kWth subpilot unit[J]. Energy & Fuels, 2012, 26(4): 2292-2302. |
15 | Hsieh T L, Xu D K, Zhang Y T, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture[J]. Applied Energy, 2018, 230: 1660-1672. |
16 | Xue Z P, Chen S Y, Wang D, et al. Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation[J]. Industrial & Engineering Chemistry Research,2012, 51(11): 4267-4278. |
17 | Chavda A, Mehta P, Harichandan A. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture[J]. Experimental and Computational Multiphase Flow, 2022, 4(4): 360-376. |
18 | Sharma R, May J, Alobaid F, et al. Euler-Euler CFD simulation of the fuel reactor of a 1 MWth chemical-looping pilot plant: influence of the drag models and specularity coefficient[J]. Fuel, 2017, 200: 435-446. |
19 | Wang S, Liu G D, Lu H L, et al. A cluster structure-dependent drag coefficient model applied to risers[J]. Powder Technology, 2012, 225: 176-189. |
20 | Wang S, Lu H L, Zhao F X, et al. CFD studies of dual circulating fluidized bed reactors for chemical looping combustion processes[J]. Chemical Engineering Journal, 2014, 236: 121-130. |
21 | Ostace A, Chen Y Y, Parker R, et al. Kinetic model development and Bayesian uncertainty quantification for the complete reduction of Fe-based oxygen carriers with CH4, CO, and H2 for chemical looping combustion[J]. Chemical Engineering Science, 2022, 252: 117512. |
22 | Gao G H, Lai Y H, Wang S. Particle-resolved simulation of Fe-based oxygen carrier in chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34624-34633. |
23 | Wang J X, Gao G H, Zhu Y C, et al. Evaluation of oxygen carrier performance in a packed-bed reactor during chemical looping hydrogen generation[J]. Chemical Engineering & Technology, 2023, 47: 504-509. |
24 | 马琎晨, 赵海波, 黄振, 等. 双循环流化床化学链燃烧反应器冷态实验研究[J]. 石油学报(石油加工), 2020, 36(6): 1189-1199. |
Ma J C, Zhao H B, Huang Z, et al. Cold-model experiment of dual circulating fluidized bed reactor for chemical looping combustion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1189-1199. | |
25 | Wang S, Lu H L, Li D, et al. Simulation of the chemical looping reforming process in the fuel reactor with a bubble-based energy minimization multiscale model[J]. Energy & Fuels, 2013, 27(8): 5008-5015. |
26 | Yurata T, Tang L G, Feng Y Q, et al. CFD simulation of a cold flow model of inter-connected three fluidized reactors applied to chemical looping hydrogen production[J]. Energy Reports, 2022, 8: 1112-1117. |
27 | Lee D, Seo M W, Nguyen T D B, et al. Solid circulation characteristics of the three-reactor chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(27): 14546-14556. |
28 | Di Renzo A, Napolitano E, Di Maio F. Coarse-grain DEM modelling in fluidized bed simulation: a review[J]. Processes, 2021, 9(2): 279. |
29 | Zhou L X. A review for developing two-fluid modeling and LES of turbulent combusting gas-particle flows[J]. Powder Technology, 2016, 297: 438-447. |
30 | Norouzi H R, Golshan S, Zarghami R. On the drag force closures for multiphase flow modeling[J]. Chemical Product and Process Modeling, 2022, 17(5): 531-582. |
31 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[C]//7th International Conference on Fluidization, 1991. |
32 | Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Journal of Fluid Mechanics, 1987, 176: 67-93. |
33 | Guan Y J, Chang J, Zhang K, et al. Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed[J]. Powder Technology, 2016, 289: 118-125. |
[1] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[2] | Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell [J]. CIESC Journal, 2024, 75(8): 2991-3001. |
[3] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[4] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[5] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[6] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[7] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
[8] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[9] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[10] | Zhian WANG, Zhong LAN, Xuehu MA. Simulation of effect of nozzle parameters on supercritical hydrothermal combustion characteristics [J]. CIESC Journal, 2024, 75(6): 2190-2200. |
[11] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[12] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[13] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[14] | Chengxiu WANG, Dashan SONG, Zhihui LI, Xiao YANG, Xingying LAN, Jinsen GAO, Chunming XU. Stable flow characteristics of Geldart C particles of desulfurization ash in a loop-coupled riser [J]. CIESC Journal, 2024, 75(4): 1485-1496. |
[15] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||