CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3842-3852.DOI: 10.11949/0438-1157.20250026
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Qidong ZHANG1(
), Liqiang AI2, Yuan MA1(
), Shengbao WU2(
), Lei WANG1, Yanzhong LI1
Received:2025-01-07
Revised:2025-02-22
Online:2025-09-17
Published:2025-08-25
Contact:
Yuan MA, Shengbao WU
张淇栋1(
), 艾立强2, 马原1(
), 吴胜宝2(
), 王磊1, 厉彦忠1
通讯作者:
马原,吴胜宝
作者简介:张淇栋(2000—),男,硕士研究生,525728536@qq.com
基金资助:CLC Number:
Qidong ZHANG, Liqiang AI, Yuan MA, Shengbao WU, Lei WANG, Yanzhong LI. Research on two-phase flow and heat transfer characteristics in precooling process of low-temperature pipelines based on one-dimensional drift-flux model[J]. CIESC Journal, 2025, 76(8): 3842-3852.
张淇栋, 艾立强, 马原, 吴胜宝, 王磊, 厉彦忠. 基于一维漂移流模型的低温管路预冷过程两相流动与换热特性研究[J]. 化工学报, 2025, 76(8): 3842-3852.
Add to citation manager EndNote|Ris|BibTeX
| 含气率 | 分布参数C0 | 加权滑移速度 |
|---|---|---|
0.4< 0.6< | ||
Table 1 Calculation formula for distribution parameters and weighted slip velocity
| 含气率 | 分布参数C0 | 加权滑移速度 |
|---|---|---|
0.4< 0.6< | ||
| 临界点和换热工况 | 模型 | 关联式 | 误差 |
|---|---|---|---|
| 膜态沸腾起始温度TLFP | Jin关联式[ | ±5% | |
| 临界热通量qCHF | 修正Katto公式[ | ±30% | |
| 临界热流温度TCHF | Kalinin[ | — | |
| 核态沸腾起始点TONB | Darr[ | — | |
| 膜态沸腾区 | Darr[ | 30%以内 | |
| 过渡沸腾区 | 线性插值 | 根据临界热流壁温TCHF与最低膜态沸腾温度TLFP插值计算 | — |
| 核态沸腾区 | 线性插值 | 根据临界热流壁温TCHF与核态沸腾起始温度TONB插值计算 | — |
| 液/气相强制对流区 | Dittus-Boelter公式[ | — |
Table 2 Calculation formula for heat transfer between fluid and pipe wall
| 临界点和换热工况 | 模型 | 关联式 | 误差 |
|---|---|---|---|
| 膜态沸腾起始温度TLFP | Jin关联式[ | ±5% | |
| 临界热通量qCHF | 修正Katto公式[ | ±30% | |
| 临界热流温度TCHF | Kalinin[ | — | |
| 核态沸腾起始点TONB | Darr[ | — | |
| 膜态沸腾区 | Darr[ | 30%以内 | |
| 过渡沸腾区 | 线性插值 | 根据临界热流壁温TCHF与最低膜态沸腾温度TLFP插值计算 | — |
| 核态沸腾区 | 线性插值 | 根据临界热流壁温TCHF与核态沸腾起始温度TONB插值计算 | — |
| 液/气相强制对流区 | Dittus-Boelter公式[ | — |
| 尺寸 | 工质 | 绝热方式 | 流动方向 | 实验序号 | 质量流速G/(kg/(m2·s)) | 入口温度/K | 入口压力/MPa |
|---|---|---|---|---|---|---|---|
Dout=12.70 mm D=11.68 mm L =572 mm | 液氮 | 真空绝热 | 竖直向上 | 1 2 3 | 126 220 324 | 饱和温度 | 0.18 0.25 0.42 |
Table 3 Experimental conditions used for model validation
| 尺寸 | 工质 | 绝热方式 | 流动方向 | 实验序号 | 质量流速G/(kg/(m2·s)) | 入口温度/K | 入口压力/MPa |
|---|---|---|---|---|---|---|---|
Dout=12.70 mm D=11.68 mm L =572 mm | 液氮 | 真空绝热 | 竖直向上 | 1 2 3 | 126 220 324 | 饱和温度 | 0.18 0.25 0.42 |
| [1] | Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic transfer line chilldown(Ⅰ): Effect of mass flux, equilibrium quality, and inlet subcooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1225-1242. |
| [2] | Darr S R, Hu H, Glikin N G, et al. An experimental study on terrestrial cryogenic tube chilldown(Ⅱ): Effect of flow direction with respect to gravity and new correlation set[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1243-1260. |
| [3] | Darr S R, Hartwig J W. Two-phase convection heat transfer correlations for liquid hydrogen pipe chilldown[J]. Cryogenics, 2020, 105: 102999. |
| [4] | Darr S R, Hartwig J W, Dong J, et al. Two-phase pipe quenching correlations for liquid nitrogen and liquid hydrogen[J]. Journal of Heat Transfer, 2019, 141(4): 042901. |
| [5] | 王娇娇, 厉彦忠, 王鑫宝, 等. 低温推进剂管路预冷沸腾换热特性研究综述[J]. 宇航学报, 2017, 38(8): 779-788. |
| Wang J J, Li Y Z, Wang X B, et al. Review of cryogenic boiling heat transfer during pipe chilldown[J]. Journal of Astronautics, 2017, 38(8): 779-788. | |
| [6] | Wang H, Huang B H, Dong J, et al. Enhancement and optimization of cryogenic metal tube chilldown heat transfer using thin-film coating(Ⅰ): Effects of flow mass flux and coating layer thickness[J]. International Communications in Heat and Mass Transfer, 2024, 153: 107368. |
| [7] | Wang H, Huang B H, Dong J, et al. Enhancement and optimization of cryogenic metal tube chilldown heat transfer using thin-film coating(Ⅱ): Chilldown efficiency, flow direction and tube wall thickness[J]. International Communications in Heat and Mass Transfer, 2024, 153: 107369. |
| [8] | Kunniyoor K R, Kunniyoor V, Ghosh P. Development of constitutive relations for predicting film boiling crisis in bare and inner wall coated cryogenic tubes with a low-thermal conductive layer for heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125112. |
| [9] | Kunniyoor K R, Ghosh P. Development of transient flow film boiling heat transfer correlations for energy efficient cryogenic fluid management during feed line quenching operation[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123806. |
| [10] | Hartwig J, Ganesan V, Johnson A, et al. A continuous flow boiling curve in the heating configuration based on new cryogenic universal correlations[J]. Applied Thermal Engineering, 2024, 248: 123235. |
| [11] | Darr S R, Hu H, Shaeffer R, et al. Numerical simulation of the liquid nitrogen chilldown of a vertical tube[C]//53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, 2015: AIAA2015-0468. |
| [12] | Jin L X, Cho H, Lee C, et al. Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, 89: 42-52. |
| [13] | 王娇娇, 陈虹, 厉彦忠, 等. 低温管路预冷过程两相流动与换热计算研究[J]. 西安交通大学学报, 2019, 53(1): 93-99. |
| Wang J J, Chen H, Li Y Z, et al. Research on the two-phase flow and heat transfer characteristics of cryogenic pipeline chill-down process[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 93-99. | |
| [14] | Liao J. Modeling two-phase transport during cryogenic chilldown in a pipeline[D]. Gainesville, FL, USA: University of Florida, 2005. |
| [15] | Zhang Q, Wang H Y, Li J L, et al. Experimental study on flow resistance and phase distribution of gas-liquid flow in helical cruciform fuel assembly[J]. Annals of Nuclear Energy, 2025, 210: 110838. |
| [16] | 刘佳伦, 李会雄, 张顺哲, 等. 基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析[J]. 核动力工程, 2023, 44(3): 79-89. |
| Liu J L, Li H X, Zhang S Z, et al. Analysis on thermal hydraulic characteristic of helical coiled tube steam generator of liquid metal fast reactor based on drift-flux model[J]. Nuclear Power Engineering, 2023, 44(3): 79-89. | |
| [17] | Barati H, Hibiki T. Two-group drift-flux model for dispersed gas-liquid flows in annuli[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125448. |
| [18] | Sun H M, Hibiki T. Two-group drift-flux model for upward cap-bubbly two-phase flows in large square channels[J]. International Journal of Heat and Mass Transfer, 2025, 237: 126445. |
| [19] | Mirzaee M M, Zolfaghari A, Minuchehr A, et al. A drift-flux analysis of the diversely heated channel using the Broyden method[J]. Applied Thermal Engineering, 2019, 150: 464-481. |
| [20] | Wu W Q, Huang T, Du P, et al. Development of a two-phase flow solver with drift-flux model based on OpenFOAM: validation against single/two-phase and boiling flow[J]. Annals of Nuclear Energy, 2025, 213: 111179. |
| [21] | Wang J J, Li Y Z, Wang L, et al. Thermal prediction of transient two-phase flow in cryogenic transportation based on drift-flux model[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121512. |
| [22] | Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow[M]. Boston, MA: Springer US, 2006. |
| [23] | Hibiki T, Ishii M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes[J]. International Journal of Heat and Mass Transfer, 2003, 46(25): 4935-4948. |
| [24] | Schlegel J, Hibiki T, Ishii M. Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters[J]. Progress in Nuclear Energy, 2010, 52(7): 666-677. |
| [25] | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
| [26] | Nukiyama S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 1966, 9(12): 1419-1433. |
| [27] | 王娇娇. 火箭低温推进剂地面加注与在轨传输过程两相传热特性研究[D]. 西安: 西安交通大学, 2021. |
| Wang J J. Research on the two phase heat transfer characteristics of low temperature rocket propellant during ground filling and in orbit transmission[D]. Xi'an: Xi'an Jiaotong University, 2021. | |
| [28] | Kalinin E, Yarkho S, Berlin I, et al. Investigation of the crisis of film boiling in channels[R]. Moscow Aviation Inst., 1969. |
| [29] | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 232-233. |
| Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 232-233. | |
| [30] | Patankar S. Numerical Heat Transfer and Fluid Flow[M]. New York: Hemisphere Publishing Corporation, 1980. |
| [31] | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
| Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [8] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [9] | Yongli MA, Shu AN, Jie YANG, Mingyan LIU. A review on direct numerical simulation of gas-liquid-solid fluidized bed [J]. CIESC Journal, 2025, 76(8): 3772-3788. |
| [10] | Chenglong XU, Guo LI, Yu WANG, Linsheng XIE, Guohui ZHANG, Pengfei LIANG. Simulation study of screw extrusion forming die for complex propellant grains with uniform arc thickness [J]. CIESC Journal, 2025, 76(8): 3954-3963. |
| [11] | Linkai WU, Zhimin LIN, Liangbi WANG. Improvement and numerical validation of quasi-steady-state frosting model based on thermal and mass transfer effect [J]. CIESC Journal, 2025, 76(8): 4004-4016. |
| [12] | Jiaxiang CHEN, Wei ZHOU, Xuewei ZHANG, Lijie WANG, Yuming HUANG, Yang YU, Miaoting SUN, Wanjing LI, Junshu YUAN, Hongbo ZHANG, Xiaoxiao MENG, Jihui GAO, Guangbo ZHAO. Simulation study on the hydrogen production performance of a two-dimensional PEMWE model under pulsed voltage [J]. CIESC Journal, 2025, 76(7): 3521-3530. |
| [13] | Yu GONG, Shengli WANG, Jinju SUN, Kuo HAI, Wen HUANG. Thermodynamic model and exploration of micro multi-stage compressor inflation system [J]. CIESC Journal, 2025, 76(7): 3626-3638. |
| [14] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [15] | Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization [J]. CIESC Journal, 2025, 76(6): 2626-2637. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||