CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2626-2637.DOI: 10.11949/0438-1157.20241128

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Research on performance of PEM electrolyzer driven by multi-objective optimization

Xiaotong XIANG(), Xudong DUAN, Simin WANG()   

  1. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2024-10-12 Revised:2024-11-22 Online:2025-07-09 Published:2025-06-25
  • Contact: Simin WANG

多目标优化驱动的PEM电解槽性能研究

向晓彤(), 段旭东, 王斯民()   

  1. 西安交通大学化学工程与技术学院,陕西 西安 710049
  • 通讯作者: 王斯民
  • 作者简介:向晓彤(2002—),男,硕士研究生,xiangxiaotong27@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22308273);中央高校基本科研业务费专项资金(xzy022024036)

Abstract:

To enhance the performance of the electrolyzer, a mathematical model was constructed for the proton exchange membrane (PEM) electrolyzer, and the influence regulations of the flow channel height, flow channel width, and water flow on the performance of the electrolyzer were analyzed. Subsequently, based on the standard quadratic polynomial response surface model and the multi-objective genetic algorithm model, the flow channel structure of the PEM electrolyzer was optimized. The research results show that: as the flow channel height or flow channel width increases, the anode flow channel pressure drop decreases, the oxygen volume fraction in the gas-liquid diffusion layer increases, the current density decreases, and the electrolysis energy consumption increases. Increasing the water flow will enhance the pressure drop of the flow channel and mitigate the oxygen accumulation phenomenon. Through multi-objective optimization, in comparison with the initial flow path structure, the optimized flow path structure reduces the pressure drop by 9.84%, the oxygen volume fraction in the gas-liquid diffusion layer by 0.74%, and increases the current density by 6.77 A/m2. The electrolytic energy consumption is decreased by 0.03 W·h/m3(standard condition).

Key words: numerical simulation, optimal design, electrolysis, PEM electrolyzer, multi-objective optimization, flow channel structure

摘要:

为了提高电解槽性能,对质子交换膜(PEM)电解槽进行数学建模,分析了流道高度、流道宽度、水流量对电解槽性能的影响规律,然后基于标准二次多项式响应面模型与多目标遗传算法模型,优化了PEM电解槽流道结构。研究结果表明:随着流道高度或者流道宽度增大,阳极流道压降降低,气液扩散层内氧气体积分数增大,电流密度减小,电解能耗增大;增大水流量将增大流道压降,改善氧气聚集现象;通过多目标优化,优化流道结构相比于初始流道结构,压降减小9.84%,气液扩散层内氧气体积分数降低0.74%,电流密度提升6.77 A/m2,电解能耗降低0.03 W·h/m3(标准状况)。

关键词: 数值模拟, 优化设计, 电解, PEM电解槽, 多目标优化, 流道结构

CLC Number: