CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 360-369.DOI: 10.11949/0438-1157.20250111
• Energy and environmental engineering • Previous Articles
Wei LI1(
), Hao CHEN1(
), Gang KE2, Xiaosheng HUANG2, Chengjiao LI2, Hang GUO1, Fang YE1
Received:2025-02-04
Revised:2025-02-17
Online:2025-06-26
Published:2025-06-25
Contact:
Hao CHEN
李卫1(
), 陈浩1(
), 柯钢2, 黄孝胜2, 李成娇2, 郭航1, 叶芳1
通讯作者:
陈浩
作者简介:李卫(2001—),男,学士,18722988134@163.com
基金资助:CLC Number:
Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory[J]. CIESC Journal, 2025, 76(S1): 360-369.
李卫, 陈浩, 柯钢, 黄孝胜, 李成娇, 郭航, 叶芳. 高原环境适应性试验室模拟平台新风系统仿真[J]. 化工学报, 2025, 76(S1): 360-369.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 参数 | 数值 |
|---|---|---|
| 1 | 空气密度/(kg/m3) | 1.2 |
| 2 | 舱内体积/m3 | 196.664 |
| 3 | 空气比热容/(kJ/(kg·K)) | 1.003 |
| 4 | 铜管比热容/(kJ/(kg·K)) | 0.45 |
| 5 | 新风流量/(m3/s) | 4000/3600 |
| 6 | 换热面积/m2 | 567 |
| 7 | 围护结构墙壁厚度/m | 0.15 |
| 8 | 热导率/(W/(m·K)) | 0.031 |
| 9 | 真空泵抽气速率/(m3/s) | 14900/3600 |
Table 1 Physical parameters
| 序号 | 参数 | 数值 |
|---|---|---|
| 1 | 空气密度/(kg/m3) | 1.2 |
| 2 | 舱内体积/m3 | 196.664 |
| 3 | 空气比热容/(kJ/(kg·K)) | 1.003 |
| 4 | 铜管比热容/(kJ/(kg·K)) | 0.45 |
| 5 | 新风流量/(m3/s) | 4000/3600 |
| 6 | 换热面积/m2 | 567 |
| 7 | 围护结构墙壁厚度/m | 0.15 |
| 8 | 热导率/(W/(m·K)) | 0.031 |
| 9 | 真空泵抽气速率/(m3/s) | 14900/3600 |
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -20 | 10 | 45 | 1088 |
| -10 | 10 | 45 | 1072 |
| 0 | 10 | 45 | 1064 |
| 10 | 10 | 45 | 1040 |
| 20 | 10 | 45 | 1024 |
| 30 | 10 | 45 | 1008 |
Table 2 Temperature equilibrium time when heating from 10℃ to 45℃
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -20 | 10 | 45 | 1088 |
| -10 | 10 | 45 | 1072 |
| 0 | 10 | 45 | 1064 |
| 10 | 10 | 45 | 1040 |
| 20 | 10 | 45 | 1024 |
| 30 | 10 | 45 | 1008 |
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -20 | 10 | -45 | 1248 |
| -10 | 10 | -45 | 1176 |
| 0 | 10 | -45 | 1136 |
| 10 | 10 | -45 | 1112 |
| 20 | 10 | -45 | 1120 |
| 30 | 10 | -45 | 1152 |
Table 3 Temperature equilibrium time from initial temperature of 10℃ to -45℃
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -20 | 10 | -45 | 1248 |
| -10 | 10 | -45 | 1176 |
| 0 | 10 | -45 | 1136 |
| 10 | 10 | -45 | 1112 |
| 20 | 10 | -45 | 1120 |
| 30 | 10 | -45 | 1152 |
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| 5 | 15 | -45 | 1232 |
| 10 | 15 | -45 | 1216 |
| 15 | 15 | -45 | 1208 |
| 20 | 15 | -45 | 1216 |
| 25 | 15 | -45 | 1224 |
Table 4 Temperature equilibrium time from initial temperature of 15℃ to -45℃
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| 5 | 15 | -45 | 1232 |
| 10 | 15 | -45 | 1216 |
| 15 | 15 | -45 | 1208 |
| 20 | 15 | -45 | 1216 |
| 25 | 15 | -45 | 1224 |
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -10 | 0 | -45 | 1232 |
| -5 | 0 | -45 | 1216 |
| 0 | 0 | -45 | 1208 |
| 5 | 0 | -45 | 1216 |
| 10 | 0 | -45 | 1224 |
Table 5 Temperature equilibrium time for initial temperature from 0℃ to -45℃
| 室外温度/℃ | 初始温度/℃ | 目标温度/℃ | 平衡时间/s |
|---|---|---|---|
| -10 | 0 | -45 | 1232 |
| -5 | 0 | -45 | 1216 |
| 0 | 0 | -45 | 1208 |
| 5 | 0 | -45 | 1216 |
| 10 | 0 | -45 | 1224 |
| 工况 | 初始压强/Pa | 目标压强/Pa | 平衡时间/s |
|---|---|---|---|
| 1 | 101325 | 90000 | 690 |
| 2 | 101325 | 80000 | 665 |
| 3 | 101325 | 70000 | 632 |
| 4 | 101325 | 60000 | 582 |
| 5 | 101325 | 50000 | 488 |
| 6 | 101325 | 47000 | 436 |
Table 6 Six operating conditions and equilibrium time for voltage reduction
| 工况 | 初始压强/Pa | 目标压强/Pa | 平衡时间/s |
|---|---|---|---|
| 1 | 101325 | 90000 | 690 |
| 2 | 101325 | 80000 | 665 |
| 3 | 101325 | 70000 | 632 |
| 4 | 101325 | 60000 | 582 |
| 5 | 101325 | 50000 | 488 |
| 6 | 101325 | 47000 | 436 |
| 室外温度/℃ | 初始湿度 | 目标湿度 | 湿度平衡时间/s |
|---|---|---|---|
| -20 | 0.15 | 0.95 | 771 |
| -10 | 0.15 | 0.95 | 818 |
| 0 | 0.15 | 0.95 | 876 |
| 10 | 0.15 | 0.95 | 951 |
| 20 | 0.15 | 0.95 | 1047 |
| 30 | 0.15 | 0.95 | 1149 |
Table 7 Relationship between outdoor temperature and humidity equilibrium time during temperature rise
| 室外温度/℃ | 初始湿度 | 目标湿度 | 湿度平衡时间/s |
|---|---|---|---|
| -20 | 0.15 | 0.95 | 771 |
| -10 | 0.15 | 0.95 | 818 |
| 0 | 0.15 | 0.95 | 876 |
| 10 | 0.15 | 0.95 | 951 |
| 20 | 0.15 | 0.95 | 1047 |
| 30 | 0.15 | 0.95 | 1149 |
| 室外温度/℃ | 初始湿度 | 目标湿度 | 湿度平衡时间/s |
|---|---|---|---|
| -20 | 0.15 | 0.95 | 231 |
| -10 | 0.15 | 0.95 | 211 |
| 0 | 0.15 | 0.95 | 195 |
| 10 | 0.15 | 0.95 | 183 |
| 20 | 0.15 | 0.95 | 172 |
| 30 | 0.15 | 0.95 | 163 |
Table 8 Relationship between outdoor temperature and humidity equilibrium time during cooling
| 室外温度/℃ | 初始湿度 | 目标湿度 | 湿度平衡时间/s |
|---|---|---|---|
| -20 | 0.15 | 0.95 | 231 |
| -10 | 0.15 | 0.95 | 211 |
| 0 | 0.15 | 0.95 | 195 |
| 10 | 0.15 | 0.95 | 183 |
| 20 | 0.15 | 0.95 | 172 |
| 30 | 0.15 | 0.95 | 163 |
| 目标压强/Pa | 初始湿度 | 目标湿度 | 平衡时间/s |
|---|---|---|---|
| 90000 | 0.15 | 0.95 | 313 |
| 80000 | 0.15 | 0.95 | 360 |
| 70000 | 0.15 | 0.95 | 427 |
| 60000 | 0.15 | 0.95 | 532 |
| 50000 | 0.15 | 0.95 | 747 |
| 47000 | 0.15 | 0.95 | 876 |
Table 9 Relationship between target pressure and humidity equilibrium time
| 目标压强/Pa | 初始湿度 | 目标湿度 | 平衡时间/s |
|---|---|---|---|
| 90000 | 0.15 | 0.95 | 313 |
| 80000 | 0.15 | 0.95 | 360 |
| 70000 | 0.15 | 0.95 | 427 |
| 60000 | 0.15 | 0.95 | 532 |
| 50000 | 0.15 | 0.95 | 747 |
| 47000 | 0.15 | 0.95 | 876 |
| 1 | 王寅, 耿金涛, 孙华锋, 等. 汽车高原环境模拟试验室[J]. 工程与试验, 2014, 54(03): 55-57. |
| Wang Y, Geng J T, Sun H F, et al. Development of automobile altitude climatic simulation laboratory[J]. Engineering & Test, 2014, 54(3): 55-57. | |
| 2 | Yang L J, Lei J L, Wang Z J, et al. Impacts of different ambient temperatures on cold-start characteristics of speed-up duration of an ISAD hybrid diesel engine in plateau[J]. Fuel, 2025, 381: 133492. |
| 3 | Cao Y H, Zhao H G, Zhang S J, et al. Impacts of ethanol blended fuels and cold temperature on VOC emissions from gasoline vehicles in China[J]. Environmental Pollution, 2024, 348: 123869. |
| 4 | Shu Z Y, Qing S, Yang X, et al. A molecular toxicological study to explore potential health risks associated with ultrafine particle exposure in cold and humid indoor environments[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117638. |
| 5 | Zhu P H, Chen X T, Liu H, et al. Recycling of waste recycled aggregate concrete in freeze-thaw environment and emergy analysis of concrete recycling system[J]. Journal of Building Engineering, 2024, 96: 110377. |
| 6 | Liu M T, Liu H, Zhu P H, et al. Recycling potential evaluation of geopolymer concrete with different cementitious system used in freeze-thaw environment[J]. Case Studies in Construction Materials, 2024, 21: e03535. |
| 7 | Che Y X, Song Y J, Yang H M, et al. Creep properties and model of fractured sandstone under freezing environment[J]. Geomechanics for Energy and the Environment, 2024, 38: 100554. |
| 8 | 王晓明. 军事极端环境模拟技术与设施发展趋势及建设策略[D]. 北京: 中国人民解放军军事医学科学院, 2017. |
| Wang X M. Development trend and construction strategy of military extreme environment simulation technology and facilities[D]. Beijing: PLA Academy of Military Medical Sciences, 2017. | |
| 9 | 李建林, 刘卓林, 陈晓燕, 等. 红外焦平面探测器杜瓦组件的热致破坏及其环境试验[J]. 红外与激光工程, 2022, 51(4): 152-161. |
| Li J L, Liu Z L, Chen X Y, et al. Thermal damage of infrared focal plane detector Dewar and its environmental test[J]. Infrared and Laser Engineering, 2022, 51(4): 152-161. | |
| 10 | 韩璐, 冯麟涵, 张磊, 等. 潜艇设备冲击试验舱段环境特性研究[J]. 振动与冲击, 2019, 38(21): 80-85. |
| Han L, Feng L H, Zhang L, et al. Environmental characteristics of submarine equipment's impact test section[J]. Journal of Vibration and Shock, 2019, 38(21): 80-85. | |
| 11 | 郭鹏, 王永岩, 冯学志, 等. 岩石力学实验高低温环境试验箱的研制与应用[J]. 实验力学, 2020, 35(1): 118-126. |
| Guo P, Wang Y Y, Feng X Z, et al. Development and application of test chamber for rock mechanics test in high and low temperature environments[J]. Journal of Experimental Mechanics, 2020, 35(1): 118-126. | |
| 12 | 冀树德, 张勃, 刘峰春, 等. 柴油机高原动力性能仿真及环境模拟系统影响分析[J]. 车用发动机, 2020(4): 84-92. |
| Ji S D, Zhang B, Liu F C, et al. Power performance simulation of diesel engine at high altitude and influence analysis of environmental simulation system[J]. Vehicle Engine, 2020(4): 84-92. | |
| 13 | 徐国稳. 基于Simulink/Fluent协同循环的空调系统与房间热环境模拟[D]. 武汉: 华中科技大学, 2021. |
| Xu G W. Simulation of air conditioning system and room thermal environment based on Simulink/Fluent collaborative cycle[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
| 14 | 金朝. 基于TRNSYS和Matlab/Simulink的空调系统建模和控制优化[D]. 合肥: 合肥工业大学, 2022. |
| Jin Z. Modeling and control optimization of air conditioning system based on TRNSYS and Matlab/Simulink[D]. Hefei: Hefei University of Technology, 2022. | |
| 15 | 王翠华, 戴玉龙, 蔡培力. 基于Matlab/Simulink环境下空调房间仿真模型的建立[J]. 大连水产学院学报, 2005, 20(2): 128-131. |
| Wang C H, Dai Y L, Cai P L. Establishing a simulation model for an air-conditioning room using Matlab/Simulink toolbox[J]. Journal of Dalian Fisheries University, 2005, 20(2): 128-131. | |
| 16 | 葛建坤, 罗金耀. 基于Simulink的温室热环境仿真模型研究[J]. 灌溉排水学报, 2013, 32(2): 86-89. |
| Ge J K, Luo J Y. Simulation model based on Simulink of thermal environment for greenhouse[J]. Journal of Irrigation and Drainage, 2013, 32(2): 86-89. | |
| 17 | Smolka J, Nowak A J, Rybarz D. Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations[J]. Journal of Food Engineering, 2010, 97(3): 373-383. |
| 18 | Su Y P, Yu Q M, Zeng L. Parameter self-tuning PID control for greenhouse climate control problem[J]. IEEE Access, 2020, 8: 186157-186171. |
| 19 | 李可, 庞丽萍, 刘旺开, 等. 环境模拟舱体的建模仿真及控制方法[J]. 北京航空航天大学学报, 2007, 33(5): 535-538. |
| Li K, Pang L P, Liu W K, et al. System model simulation and control method used in environmental simulation chambers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(5): 535-538. | |
| 20 | 王建刚, 杨洪涛, 于晓周, 等. 大型气候环境试验舱冷热端温度动态模糊PID协调控制[J]. 光学精密工程, 2022, 30(24): 3159-3167. |
| Wang J G, Yang H T, Yu X Z, et al. Dynamic fuzzy-PID coordinated control of the cool-hot end temperature of large climate environmental test chambers[J]. Optics and Precision Engineering, 2022, 30(24): 3159-3167. | |
| 21 | 王鹏英. 模糊Smith在温控系统中的仿真研究[J]. 计算机仿真, 2011, 28(6): 247-250. |
| Wang P Y. Simulation on temperature control system based on fuzzy Smith[J]. Computer Simulation, 2011, 28(6): 247-250. | |
| 22 | 杜明明. 变风量空调系统的Simulink建模与仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. |
| Du M M. Simulink modeling and simulation of VAV air conditioning system[D]. Harbin: Harbin Institute of Technology, 2006. | |
| 23 | 阚丹青, 唐良宝, 赵智林. 基于MATLAB的空调房间温控系统的仿真研究[J]. 世界科技研究与发展, 2011, 33(1): 110-113. |
| Kan D Q, Tang L B, Zhao Z L. Simulation of air-conditioned room temperature control system based on MATLAB[J]. World Sci-Tech R$D, 2011, 33(1): 110-113. | |
| 24 | 王建明, 李训铭. 变风量系统空调房间建模与特性参数估算[J]. 计算机仿真, 2002, 19(4): 69-72. |
| Wang J M, Li X M. Modeling and estimating of the characteristic parameters for the air conditioning room of the VAV system[J]. Computer Simulation, 2002, 19(4): 69-72. | |
| 25 | 王翠华, 战洪仁, 寇丽萍, 等. 建立变风量空调房间仿真模型的一种简便方法[J]. 沈阳化工学院学报, 2005, 19(3): 220-223. |
| Wang C H, Zhan H R, Kou L P, et al. A simple method of establishing simulated model for VAV air-conditioning room[J]. Journal of Shenyang Institute of Chemical Technology, 2005, 19(3): 220-223. | |
| 26 | Khosravi-Bizhaem H, Abbassi A, Zivari Ravan A. Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: an experimental study[J]. Applied Thermal Engineering, 2019, 160: 114012. |
| 27 | 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006. |
| Wang X D, Ba D C, Zhang S W, et al. Vacuum Technique[M]. Beijing: Metallurgical Industry Press, 2006. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [3] | Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance [J]. CIESC Journal, 2025, 76(5): 2219-2229. |
| [4] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
| [5] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
| [6] | Mingcheng SHAO, Yugui PAN, Zengli WANG, Qiang ZHAO. Study on the thermal properties of CO2/CH4 mixtures in the theoretical trans-critical pressurization process [J]. CIESC Journal, 2024, 75(10): 3742-3751. |
| [7] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
| [8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
| [9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
| [10] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
| [11] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
| [12] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
| [13] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
| [14] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
| [15] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||