CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5176-5189.DOI: 10.11949/0438-1157.20250130
• Separation engineering • Previous Articles Next Articles
Shicheng WANG1(
), Xinru ZHANG1,2, Yonghong WANG1,2(
), Jinping LI1,2
Received:2025-02-13
Revised:2025-03-21
Online:2025-11-25
Published:2025-10-25
Contact:
Yonghong WANG
王士成1(
), 张新儒1,2, 王永洪1,2(
), 李晋平1,2
通讯作者:
王永洪
作者简介:王士成(1999—),男,硕士研究生,wangshicheng319720@163.com
基金资助:CLC Number:
Shicheng WANG, Xinru ZHANG, Yonghong WANG, Jinping LI. Enhancing the CO2/N2 separation performance of PVAm facilitated transport membrane by sulfonated CAU-1[J]. CIESC Journal, 2025, 76(10): 5176-5189.
王士成, 张新儒, 王永洪, 李晋平. 磺化CAU-1强化聚乙烯胺促进传递膜的CO2/N2分离性能[J]. 化工学报, 2025, 76(10): 5176-5189.
Add to citation manager EndNote|Ris|BibTeX
| Samples | BET surface area/ (m2·g-1) | Total pore volume/ (cm3·g-1) | H-K micropore volume / (cm3·g-1) | Average pore diameter/nm |
|---|---|---|---|---|
| CAU-1 | 755.33 | 1.069 | 0.332 | 6.34 |
| CAU-1@BS | 426.91 | 0.515 | 0.187 | 5.31 |
Table 1 Porous structure parameters of materials
| Samples | BET surface area/ (m2·g-1) | Total pore volume/ (cm3·g-1) | H-K micropore volume / (cm3·g-1) | Average pore diameter/nm |
|---|---|---|---|---|
| CAU-1 | 755.33 | 1.069 | 0.332 | 6.34 |
| CAU-1@BS | 426.91 | 0.515 | 0.187 | 5.31 |
Fig.7 Effect of (a) the mass ratio of CAU-1to BS and (b) CAU-1@BS loading on the gas separation performance of the membranes; Effect of the wet coating thickness on (c) CO2 permeance and (d) CO2/N2 selectivity of membranes
Fig.9 Dependence of (a) CO2 permeance and (b) CO2/N2 selectivity of the pristine PVAm membrane and PVAm/CAU-1@BS membrane as functions of operating temperature
Fig.11 (a) Gas separation performances of MMCMs loaded with different fillers; (b) Diffusion coefficients and (c) solubility coefficients of Pebax-based membranes with different fillers added
| [1] | Jiang Z P, Qin C, Pan Y W, et al. Multi-decadal coastal acidification in the northern gulf of Mexico driven by climate change and eutrophication[J]. Geophysical Research Letters, 2024, 51(5): e2023GL106300. |
| [2] | Liu C, Shao L Y, Pan C J, et al. Ammonia-based post-combustion CO2 and SO2 integrating capture using multi-stage solvent circulation process[J]. Separation and Purification Technology, 2024, 339: 126611. |
| [3] | Chavaillaz Y, Roy P, Partanen A I, et al. Exposure to excessive heat and impacts on labour productivity linked to cumulative CO2 emissions[J]. Scientific Reports, 2019, 9(1): 13711. |
| [4] | Krótki A, Chwoła T, Więcław-Solny L, et al. Advancements in CO2 hydrogenation—investigating a CNG pilot plant in Poland[J]. Fuel, 2025, 381: 133599. |
| [5] | Yu X H, Xu H Y, Yin J, et al. Achieving China's CO2 reduction targets: insights from a hybrid PPA-PPR forecasting model[J]. Journal of Environmental Management, 2024, 372: 123409. |
| [6] | 谢钰麟, 饶瑞晔, 黄建, 等. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
| Xie Y L, Rao R Y, Huang J, et al. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. | |
| [7] | Wang K F, Chen D L, Tang J L, et al. PIM-1-based membranes mediated with CO2-philic MXene nanosheets for superior CO2/N2 separation[J]. Chemical Engineering Journal, 2024, 483: 149305. |
| [8] | He W, Wang X Z, Guan J, et al. Membranes with molecular gatekeepers for efficient CO2 capture and H2 purification[J]. ACS Applied Materials & Interfaces, 2024, 16(16): 21222-21232. |
| [9] | Sreenath S, Sam A A. Hybrid membrane-cryogenic CO2 capture technologies: a mini-review[J]. Frontiers in Energy Research, 2023, 11: 1167024. |
| [10] | Zheng W J, Yu J B, Hu Z Y, et al. 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture[J]. Journal of Membrane Science, 2022, 653: 120542. |
| [11] | Mohsenpour Tehrani M, Chehrazi E. Metal-organic-frameworks based mixed-matrix membranes for CO2 separation: an applicable-conceptual approach[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 32906-32929. |
| [12] | Gan L, Andres-Garcia E, Mínguez Espallargas G, et al. Adsorptive separation of CO2 by a hydrophobic carborane-based metal-organic framework under humid conditions[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5309-5316. |
| [13] | Yahia M, Lozano L A, Zamaro J M, et al. Microwave-assisted synthesis of metal-organic frameworks UiO-66 and MOF-808 for enhanced CO2/CH4 separation in PIM-1 mixed matrix membranes[J]. Separation and Purification Technology, 2024, 330: 125558. |
| [14] | 张文焱, 刘浩, 宋伟龙, 等. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928. |
| Zhang W Y, Liu H, Song W L, et al. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes[J]. CIESC Journal, 2024, 75(5): 1920-1928. | |
| [15] | Carja I D, Tavares S R, Shekhah O, et al. Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 29041-29047. |
| [16] | Jiang Y Z, Liu C Y, Caro J, et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance[J]. Microporous and Mesoporous Materials, 2019, 274: 203-211. |
| [17] | Katare A, Mandal B. Surface engineering of Zr BDC nanoparticles via conjugation with lysine to enhance the CO2/N2 separation performance of chitosan mixed matrix membranes under dry and humid conditions[J]. ACS Applied Nano Materials, 2023, 6(6): 4821-4833. |
| [18] | Wang B, Qiao Z H, Xu J Y, et al. Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly[J]. Advanced Materials, 2020, 32(22): 1907701. |
| [19] | Xiao S J, Huo X W, Tong Y X, et al. Improvement of thin-film nanocomposite(TFN) membrane performance by CAU-1 with low charge and small size[J]. Separation and Purification Technology, 2021, 274: 118467. |
| [20] | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation[J]. Journal of Membrane Science, 2020, 599: 117828. |
| [21] | Wang Y H, Hu F N, Zhang X R, et al. Enhancing CO2-facilitated transport in PVAm membranes through the synergistic effect of porous molybdenum disulfide and mobilizable sulfonic groups[J]. Journal of Materials Chemistry A, 2025, 13(4): 3132-3145. |
| [22] | Ahnfeldt T, Dr N G, Gunzelmann D, et al. [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅xH2O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick[J]. Angewandte Chemie International Edition, 2009, 48(28): 5163-5166. |
| [23] | Makhtar S N N M, Pauzi M Z M, Peechmani P, et al. The feasibility study of CAU-1 as an adsorbent for Cu, Zn, Pb, As, Fe and endocrine disrupting chemical bisphenol-A (BPA)[J]. Arabian Journal of Chemistry, 2023, 16(9): 105042. |
| [24] | Dhakshinamoorthy A, Heidenreich N, Lenzen D, et al. Knoevenagel condensation reaction catalysed by Al-MOFs with CAU-1 and CAU-10-type structures[J]. CrystEngComm, 2017, 19(29): 4187-4193. |
| [25] | Mukhopadhyay S, Debgupta J, Singh C, et al. Designing UiO-66-based superprotonic conductor with the highest metal-organic framework based proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13423-13432. |
| [26] | Zhong X, Liang W, Wang H F, et al. Aluminum-based metal-organic frameworks (CAU-1) highly efficient U O 2 2 + and T c O 4 - ions immobilization from aqueous solution[J]. Journal of Hazardous Materials, 2021, 407: 124729. |
| [27] | Wu D P, Lin H, Ren X F, et al. ZIF-8 derived spherical porous carbon as an efficient sustained-release carrier for nitroimidazole drugs[J]. Materials Today Chemistry, 2024, 38: 102057. |
| [28] | Lu J C, Zhong X Y, Lin X M, et al. Nanoconfined carbonization enabling high-density porous carbon for jointly superior gravimetric and volumetric zinc-ion storage[J]. Energy & Environmental Science, 2024, 17(18): 6833-6843. |
| [29] | Wang Y H, Bai X, Zhang X R, et al. Improving CO2 separation performance of PVAm membrane by the addition of polyethylenimine-functionalized halloysite nanotubes[J]. Journal of Membrane Science, 2023, 677: 121609. |
| [30] | 王立维, 王娟娟, 王永洪, 等. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
| Wang L W, Wang J J, Wang Y H, et al. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. | |
| [31] | Wang M, Wang Z, Li N, et al. Relationship between polymer-filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes[J]. Journal of Membrane Science, 2015, 495: 252-268. |
| [32] | Li X H, He S, Jiang Y D, et al. Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites[J]. Nature Communications, 2023, 14(1): 5707. |
| [33] | Zhang N, Peng D D, Wu H, et al. Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes[J]. Journal of Membrane Science, 2018, 549: 670-679. |
| [34] | Liao J Y, Wang Z, Gao C Y, et al. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation[J]. Journal of Materials Chemistry A, 2015, 3(32): 16746-16761. |
| [35] | Li P Y, Wang Z, Liu Y N, et al. A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances[J]. Journal of Membrane Science, 2015, 476: 243-255. |
| [36] | Wang W F, Yuan Y, Shi F, et al. Enhancing dispersibility of nanofiller via polymer-modification for preparation of mixed matrix membrane with high CO2 separation performance[J]. Journal of Membrane Science, 2023, 683: 121791. |
| [37] | Zhao S, Cao X C, Ma Z J, et al. Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5139-5148. |
| [38] | He Y P, Wang Z, Dong S L, et al. Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature[J]. Journal of Membrane Science, 2016, 518: 60-71. |
| [39] | Zhang C X, Wang Z, Cai Y, et al. Investigation of gas permeation behavior in facilitated transport membranes: relationship between gas permeance and partial pressure[J]. Chemical Engineering Journal, 2013, 225: 744-751. |
| [40] | Xin Q P, Liu T Y, Li Z, et al. Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation[J]. Journal of Membrane Science, 2015, 488: 67-78. |
| [41] | Zhang B B, Fu J W, Zhang Q F, et al. Study on CO2 facilitated separation of mixed matrix membranes containing surface modified MWCNTs[J]. Journal of Applied Polymer Science, 2019, 136(33): 47848. |
| [42] | Janakiram S, Yu X Y, Ansaloni L, et al. Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33302-33313. |
| [43] | Cao X C, Wang Z, Qiao Z H, et al. Penetrated COF channels: amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5306-5315. |
| [1] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [2] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [3] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [4] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [5] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [6] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [7] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [8] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| [9] | Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution [J]. CIESC Journal, 2025, 76(8): 4095-4107. |
| [10] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [11] | Minghu JIANG, Fan WANG, Lei XING, Lixin ZHAO, Xinya LI, Dingwei CHEN. Influence of gas-containing on flow field characteristics and separation performance in oil-water separation string [J]. CIESC Journal, 2025, 76(7): 3361-3372. |
| [12] | Zhao GAO, Xi WU, Dan XIA, Linzhou ZHANG. Development of thermodynamics and separation unit modules of petroleum refining molecular management platform [J]. CIESC Journal, 2025, 76(7): 3212-3225. |
| [13] | Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes [J]. CIESC Journal, 2025, 76(6): 2714-2721. |
| [14] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [15] | Renze SHI, Qiuyan DING, Zhenjun YUAN, Jian NA, Jianhua LIU, Shuhu GUO, Xiong ZHAO, Hong LI, Xin GAO. Study on the purification technology of 4N electronic-grade diethoxymethylsilane [J]. CIESC Journal, 2025, 76(5): 2186-2197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||