CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4030-4041.DOI: 10.11949/0438-1157.20250156
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xinyi CHAO(
), Wenyao CHEN(
), Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN(
)
Received:2025-02-20
Revised:2025-03-30
Online:2025-09-17
Published:2025-08-25
Contact:
Wenyao CHEN, Xuezhi DUAN
巢欣旖(
), 陈文尧(
), 张晶, 钱刚, 周兴贵, 段学志(
)
通讯作者:
陈文尧,段学志
作者简介:巢欣旖(2000—),女,硕士研究生,Y30220188@mail.ecust.edu.cn
基金资助:CLC Number:
Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate[J]. CIESC Journal, 2025, 76(8): 4030-4041.
巢欣旖, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 甲醇和乙酸甲酯一步法制丙酸甲酯催化剂的可控制备与性能调控[J]. 化工学报, 2025, 76(8): 4030-4041.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
|---|---|---|---|
| SiO2 | 428.9 | 0.76 | 6.71 |
| Cs/SiO2 | 92.0 | 0.59 | 21.85 |
| 1Ti-Cs/SiO2 | 235.9 | 0.84 | 11.48 |
| 2Ti-Cs/SiO2 | 240.9 | 0.75 | 9.65 |
| 3Ti-Cs/SiO2 | 241.5 | 0.65 | 8.62 |
| 4Ti-Cs/SiO2 | 246.1 | 0.64 | 8.42 |
| 5Ti-Cs/SiO2 | 269.3 | 0.70 | 8.19 |
Table 1 Pore structure parameters of the support and supported catalysts
| 催化剂 | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
|---|---|---|---|
| SiO2 | 428.9 | 0.76 | 6.71 |
| Cs/SiO2 | 92.0 | 0.59 | 21.85 |
| 1Ti-Cs/SiO2 | 235.9 | 0.84 | 11.48 |
| 2Ti-Cs/SiO2 | 240.9 | 0.75 | 9.65 |
| 3Ti-Cs/SiO2 | 241.5 | 0.65 | 8.62 |
| 4Ti-Cs/SiO2 | 246.1 | 0.64 | 8.42 |
| 5Ti-Cs/SiO2 | 269.3 | 0.70 | 8.19 |
| 催化剂 | Ti3+/Ti | Ti4+/Ti | Olatt/O |
|---|---|---|---|
| Cs/SiO2 | — | — | 14.2% |
| 1Ti-Cs/SiO2 | 32.18% | 67.82% | 14.4% |
| 2Ti-Cs/SiO2 | 36.60% | 63.40% | 16.4% |
| 3Ti-Cs/SiO2 | 40.78% | 59.22% | 17.0% |
| 4Ti-Cs/SiO2 | 47.06% | 52.94% | 17.3% |
| 5Ti-Cs/SiO2 | 50.52% | 49.48% | 17.6% |
Table 2 Ratios of Ti3+, Ti4+ and Olatt in the catalysts
| 催化剂 | Ti3+/Ti | Ti4+/Ti | Olatt/O |
|---|---|---|---|
| Cs/SiO2 | — | — | 14.2% |
| 1Ti-Cs/SiO2 | 32.18% | 67.82% | 14.4% |
| 2Ti-Cs/SiO2 | 36.60% | 63.40% | 16.4% |
| 3Ti-Cs/SiO2 | 40.78% | 59.22% | 17.0% |
| 4Ti-Cs/SiO2 | 47.06% | 52.94% | 17.3% |
| 5Ti-Cs/SiO2 | 50.52% | 49.48% | 17.6% |
| 催化剂 | 总酸量/ (μmol/g) | 不同强度酸量/(μmol/g) | 总碱量/ (μmol/g) | 不同强度碱量/(μmol/g) | ||||
|---|---|---|---|---|---|---|---|---|
| 弱 | 中强 | 强 | 弱 | 中强 | 强 | |||
| 1Ti-Cs/SiO2 | 87 | 36 | 37 | 15 | 188 | 90 | 60 | 36 |
| 2Ti-Cs/SiO2 | 101 | 43 | 40 | 17 | 164 | 84 | 59 | 22 |
| 3Ti-Cs/SiO2 | 115 | 52 | 48 | 15 | 142 | 77 | 47 | 19 |
| 4Ti-Cs/SiO2 | 130 | 64 | 51 | 16 | 123 | 73 | 37 | 13 |
| 5Ti-Cs/SiO2 | 134 | 72 | 51 | 11 | 110 | 72 | 35 | 3 |
Table 3 Acid-base properties of catalysts
| 催化剂 | 总酸量/ (μmol/g) | 不同强度酸量/(μmol/g) | 总碱量/ (μmol/g) | 不同强度碱量/(μmol/g) | ||||
|---|---|---|---|---|---|---|---|---|
| 弱 | 中强 | 强 | 弱 | 中强 | 强 | |||
| 1Ti-Cs/SiO2 | 87 | 36 | 37 | 15 | 188 | 90 | 60 | 36 |
| 2Ti-Cs/SiO2 | 101 | 43 | 40 | 17 | 164 | 84 | 59 | 22 |
| 3Ti-Cs/SiO2 | 115 | 52 | 48 | 15 | 142 | 77 | 47 | 19 |
| 4Ti-Cs/SiO2 | 130 | 64 | 51 | 16 | 123 | 73 | 37 | 13 |
| 5Ti-Cs/SiO2 | 134 | 72 | 51 | 11 | 110 | 72 | 35 | 3 |
Fig.7 Catalytic performance of xTi-Cs/SiO2 catalysts in fixed-bed reactor and correlation between weak acid/base site proportion and aldol condensation performance
| [1] | Zhou X P, Dong J C, Zhao Y, et al. Synergy of photo- and photothermal-catalytic synthesis of methyl propionate from ethylene and carbon dioxide over B–TiO2/Ru[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 9255-9263. |
| [2] | Wang L M, Zhang G L, Zhao H, et al. Encapsulation of phosphine-palladium complex in USY zeolite for hydroesterification of ethylene to methyl propionate[J]. Chemical Engineering Science, 2025, 304: 120976. |
| [3] | 王鲁明, 李增喜. 丙酸甲酯催化合成过程研究进展[J]. 工程研究——跨学科视野中的工程, 2024, 16(5): 481-499. |
| Wang L M, Li Z X. Research progress on the catalytic synthesis process of methyl propionate[J]. Journal of Engineering Studies, 2024, 16(5): 481-499. | |
| [4] | Sun T, Wang G, Guo X P, et al. A highly active NiMoAl catalyst prepared by a solvothermal method for the hydrogenation of methyl acrylate[J]. Catalysts, 2022, 12(10): 1118. |
| [5] | Liu G L, Li G, Song H Y. Direct synthesis of methyl propionate from n-propyl alcohol and methanol using gold catalysts[J]. Catalysis Letters, 2009, 128(3): 493-501. |
| [6] | Zhang B, Yuan H Y, Liu Y, et al. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester[J]. Nature Communications, 2024, 15(1): 7837. |
| [7] | Sivakumar G, Kumar R, Yadav V, et al. Multi-functionality of methanol in sustainable catalysis: beyond methanol economy[J]. ACS Catalysis, 2023, 13(22): 15013-15053. |
| [8] | Chen W Y, Zuo J, Sang K, et al. Leveraging the proximity and distribution of Cu-Cs sites for direct conversion of methanol to esters/aldehydes[J]. Angewandte Chemie (International Ed), 2024, 63(1): e202314288. |
| [9] | Guan Y N, Ma H Q, Chen W Y, et al. Methyl methacrylate synthesis: thermodynamic analysis for oxidative esterification of methacrolein and aldol condensation of methyl acetate[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17408-17416. |
| [10] | 左骥, 罗莉, 谢永锴, 等. 甲醇无氧脱氢制甲醛Cu催化剂的粒径效应[J]. 化工进展, 2025, 44(3): 1347-1354. |
| Zuo J, Luo L, Xie Y K, et al. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. | |
| [11] | Wang G, Li Z X, Li C S. Recent progress in one-step synthesis of acrylic acid and methyl acrylate via aldol reaction: catalyst, mechanism, kinetics and separation[J]. Chemical Engineering Science, 2022, 247: 117052. |
| [12] | Feng X Z, Sun B, Yao Y, et al. Renewable production of acrylic acid and its derivative: new insights into the aldol condensation route over the vanadium phosphorus oxides[J]. Journal of Catalysis, 2014, 314: 132-141. |
| [13] | Wang Y M, Wang Z L, Hao X, et al. Nb-doped vanadium phosphorus oxide catalyst for the aldol condensation of acetic acid with formaldehyde to acrylic acid[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12055-12060. |
| [14] | He T, Qu Y X, Wang J D. Aldol condensation reaction of methyl acetate and formaldehyde over cesium oxide supported on silica gel: an experimental and theoretical study[J]. Catalysis Letters, 2019, 149(2): 373-389. |
| [15] | Ai M. Formation of methyl methacrylate by condensation of methyl propionate with formaldehyde over silica-supported cesium hydroxide catalysts[J]. Applied Catalysis A: General, 2005, 288(1/2): 211-215. |
| [16] | Tai J R, Davis R J. Synthesis of methacrylic acid by aldol condensation of propionic acid with formaldehyde over acid-base bifunctional catalysts[J]. Catalysis Today, 2007, 123(1/2/3/4): 42-49. |
| [17] | Wang Y N, Yan R Y, Lv Z P, et al. Lanthanum and cesium-loaded SBA-15 catalysts for MMA synthesis by aldol condensation of methyl propionate and formaldehyde[J]. Catalysis Letters, 2016, 146(9): 1808-1818. |
| [18] | Xu L, Wang X P, Song J H, et al. Acid promoter-modified Cs/Al2O3 catalyst for methyl methacrylate production by aldol condensation of methyl propionate with formaldehyde[J]. Industrial & Engineering Chemistry Research, 2023, 62(49): 21130-21139. |
| [19] | Sararuk C, Yang D, Zhang G L, et al. One-step aldol condensation of ethyl acetate with formaldehyde over Ce and P modified cesium supported alumina catalyst[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 342-349. |
| [20] | Wu Z Y, Wang L M, Li Z X, et al. Unveiling the promotion of Brønsted acid sites in Cs dispersion and consequential Si-O-Cs species formation for methyl acrylate synthesis from methyl acetate and formaldehyde over Cs/Beta zeolite catalyst[J]. Chemical Engineering Journal, 2023, 474: 145655. |
| [21] | Guo Z J, Zhang G L, Wang L, et al. Fe-modified Cs–P/γ-Al2O3 catalyst for synthesis of methyl methacrylate from methyl propionate and formaldehyde[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3334-3341. |
| [22] | Deng S L, Yan T T, Ran R, et al. Influence of Al oxides on Cs-SiO2 catalysts for vapor phase aldol condensation of methyl acetate and formaldehyde[J]. Industrial & Engineering Chemistry Research, 2022, 61(17): 5766-5777. |
| [23] | Bao Q, Qi H, Zhang C L, et al. Highly catalytic activity of Ba/γ-Ti-Al2O3 catalyst for aldol condensation of methyl acetate with formaldehyde[J]. Catalysis Letters, 2018, 148(11): 3402-3412. |
| [24] | Rekoske J E, Barteau M A. Kinetics, selectivity, and deactivation in the aldol condensation of acetaldehyde on anatase titanium dioxide[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 41-51. |
| [25] | Zhang Z Y, Berdugo-Díaz C E, Bregante D T, et al. Aldol condensation and esterification over Ti-substituted *BEA zeolite: mechanisms and effects of pore hydrophobicity[J]. ACS Catalysis, 2022, 12(2): 1481-1496. |
| [26] | Idriss H, Kim K S, Barteau M A. Carbon-Carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO2 surfaces[J]. Journal of Catalysis, 1993, 139(1): 119-133. |
| [27] | Gao B Z, Zhu Q R, Yi Y H, et al. Catalytic performance of amorphous Ti/SiO2 in the gas-phase epoxidation of propylene with H2O2 [J]. European Journal of Inorganic Chemistry, 2023, 26(22): e202200661. |
| [28] | Guo Y J, Hwang S J, Katz A. Hydrothermally robust Ti/SiO2 epoxidation catalysts via surface modification with oligomeric PMHS[J]. Molecular Catalysis, 2019, 477: 110509. |
| [29] | Liu J Y, Li Z X, Bian Y H, et al. Promotional effect of Ti on catalytic performance of Cs/Ti-SiO2 for conversion of methyl propionate and formaldehyde to methyl methacrylate[J]. Chemical Engineering Science, 2024, 283: 119441. |
| [30] | Pham T N, Shi D C, Sooknoi T, et al. Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts[J]. Journal of Catalysis, 2012, 295: 169-178. |
| [31] | Jia B Y, Wu M J, Zhang H, et al. Ti functionalized hierarchical-pore UiO-66(Zr/Ti) catalyst for the transesterification of phenyl acetate and dimethyl carbonate[J]. New Journal of Chemistry, 2019, 43(43): 16981-16989. |
| [32] | Arillo M A, López M L, Pico C, et al. Surface characterisation of spinels with Ti(Ⅳ) distributed in tetrahedral and octahedral sites[J]. Journal of Alloys and Compounds, 2001, 317: 160-163. |
| [33] | Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3): 887-898. |
| [34] | Lin Y L, Wang T J, Jin Y. Surface characteristics of hydrous silica-coated TiO2 particles[J]. Powder Technology, 2002, 123(2/3): 194-198. |
| [35] | Hong Z, Zhao G Q, Huang F T, et al. Enhancing the side-chain alkylation of toluene with methanol to styrene over the Cs-modified X zeolite by the assistance of basic picoline as a co-catalyst[J]. Green Energy & Environment, 2022, 7(6): 1241-1252. |
| [36] | Li Q, Deng S L, Liu J Y, et al. PEG-assisted synthesis of highly dispersed Cs/Zr-SiO2 catalyst for aldol condensation of methyl acetate with formaldehyde[J]. Chemical Engineering Science, 2025, 301: 120716. |
| [37] | Shintaku H, Nakajima K, Kitano M, et al. Lewis acid catalysis of TiO4 tetrahedra on mesoporous silica in water[J]. ACS Catalysis, 2014, 4(4): 1198-1204. |
| [38] | Liang X H, Peng X X, Xia C J, et al. Improving Ti incorporation into the BEA framework by employing ethoxylated chlorotitanate as Ti precursor: postsynthesis, characterization, and incorporation mechanism[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1219-1230. |
| [39] | Guidotti M, Ravasio N, Psaro R, et al. Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance?[J]. Journal of Catalysis, 2003, 214(2): 242-250. |
| [40] | Li W Q, Qiu M H, Li W T, et al. Au supported defect free TS-1 for enhanced performance of gas phase propylene epoxidation with H2 and O2[J]. Sustainable Energy & Fuels, 2022, 6(10): 2462-2470. |
| [41] | Hu J, Lu Z P, Yin H B, et al. Aldol condensation of acetic acid with formaldehyde to acrylic acid over SiO2-, SBA-15-, and HZSM-5-supported V-P-O catalysts[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 145-151. |
| [42] | Yan T T, Deng S L, Ran R, et al. Cesium loaded on an Al-modified silica support catalyst for methyl acrylate synthesis by aldol condensation of methyl acetate and formaldehyde[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2748-2758. |
| [43] | Wang B, Deng S L, Bian Y H, et al. Aldol condensation of methyl propionate and formaldehyde: thermodynamics, reaction process, and network[J]. Industrial & Engineering Chemistry Research, 2022: acs.iecr.2c02570. |
| [44] | Zuo C C, Li C S, Ge T T, et al. Spherical P-modified catalysts for heterogeneous cross-aldol condensation of formaldehyde with methyl acetate for methyl acrylate production[J]. The Canadian Journal of Chemical Engineering, 2017, 95(11): 2104-2111. |
| [45] | Ma H Q, Guan Y N, Chen W Y, et al. Support effects of Cs/Al2O3 catalyzed aldol condensation of methyl acetate with formaldehyde[J]. Catalysis Today, 2021, 365: 310-317. |
| [46] | 李晓云, 孙彦民, 于海斌. 甲醇催化脱氢制无水甲醛研究进展[C]//全国工业催化信息站, 工业催化杂志社.第七届全国工业催化技术及应用年会论文集. 天津: 中国海油天津化工研究设计院催化技术重点实验室, 2010: 134-136. |
| Li X Y, Sun Y M, Yu H B. Research progress in catalytic dehydrogenation of methanol to anhydrous formaldehyde[C]// National Industrial Catalysis Information Station, Industrial Catalysis Journal. Proceedings of the 7th National Annual Conference on Industrial Catalytic Technology and Applications. Tianjin: CNOOC Tianjin Chemical Research & Design Institute Key Laboratory of Catalytic Technology, 2010: 134-136. | |
| [47] | Ran R, Zhu W, Zhang G L, et al. Unraveling the coking and deactivation behavior of Al-Cs/SiO2 catalyst in the aldol condensation of methyl propionate with formaldehyde[J]. Industrial & Engineering Chemistry Research, 2024, 63(3): 1286-1297. |
| [48] | Xu L, Wang X P, Song J H, et al. Coking and deactivation behavior study of Ce-modified Cs-Nb/Al2O3 in aldol condensation of methyl propionate with formaldehyde[J]. Molecular Catalysis, 2024, 564: 114323. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [3] | Mengyuan PENG, Jiaming LI, Min SHA, Ding ZHANG. Study on performance of quaternary ammonium fluorocarbon surfactant compound system [J]. CIESC Journal, 2025, 76(8): 4177-4184. |
| [4] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [5] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [6] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [7] | Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene [J]. CIESC Journal, 2025, 76(8): 4071-4080. |
| [8] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [9] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [10] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [11] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [12] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [13] | Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes [J]. CIESC Journal, 2025, 76(6): 2714-2721. |
| [14] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [15] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||