CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4512-4523.DOI: 10.11949/0438-1157.20250169

• Special Column: Modeling and Simulation in Process Engineering • Previous Articles     Next Articles

Fault detection of catalyst loss in FCC disengager based on autoencoder and multi-scale symbolic transfer entropy

Chunmeng ZHU1,2(), Zeng LI2, Nan LIU2, Yunpeng ZHAO2, Xiaogang SHI2, Xingying LAN2()   

  1. 1.College of Artificial Intelligence, China University of Petroleum (Beijing), Beijing 102249, China
    2.State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2025-02-24 Revised:2025-04-09 Online:2025-10-23 Published:2025-09-25
  • Contact: Xingying LAN

基于自编码器和多尺度符号转移熵的FCC沉降器跑剂故障检测

朱春梦1,2(), 李增2, 柳楠2, 赵云鹏2, 石孝刚2, 蓝兴英2()   

  1. 1.中国石油大学(北京)人工智能学院,北京 102249
    2.中国石油大学(北京)重质油全国重点实验室,北京 102249
  • 通讯作者: 蓝兴英
  • 作者简介:朱春梦(1998—),女,博士研究生,2021311106@student.cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFE0212400);国家自然科学基金创新研究群体项目(22021004)

Abstract:

Fluid catalytic cracking (FCC) disengager catalyst loss faults are complex, with multiple variables deviating from normal when occurring. These faults must be detected and mitigated promptly to ensure the long-term stable operation of the FCC unit. This study proposes an unsupervised run-off fault detection method (AEM) that integrates autoencoder (AE) and multi-scale symbol transfer entropy (MSTE), which fully considers the complex time dependency in time series data and the non-stationarity of the time series after the fault. The dual attention (DA) mechanism is incorporated into a long short-term memory (LSTM) network with an encoder-decoder structure. By applying the feature attention (FA) mechanism to assign weights to input feature variables, key features are dynamically emphasized, enabling the identification of the main fault variables. The temporal attention (TA) mechanism further enhances fault detection by assigning weights to capture dependency information at each time step along the time dimension. Additionally, a causal diagram is constructed for the nonstationary process using the MSTE method to reveal time delays between variables and eliminate indirect causal relationships. The effectiveness of AEM is verified by analyzing the perforation process of the fast-separating head of the settler, and the interpretability of the decision-making process is improved.

Key words: process control, safety, unsupervised learning, neural networks, causality discovery

摘要:

催化裂化(fluid catalytic cracking,FCC)沉降器跑剂故障复杂,故障发生时多个参数会偏离正常状态,需迅速检测和缓解,以保障FCC装置长周期稳定运行。提出了一种集成自编码器(autoencoder,AE)和多尺度符号转移熵(multi-scale symbol transfer entropy,MSTE)的无监督跑剂故障检测方法(AEM),充分考虑了时间序列数据中复杂的时间依赖关系及故障后时间序列的非平稳性。将双重注意力(dual attention,DA)机制融入长短期记忆单元(long short-term memory,LSTM)的编码器-解码器结构中,其中特征注意力(feature attention,FA)机制通过为输入特征变量分配权重,动态强调关键特征并识别主要故障变量;时间注意力(temporal attention,TA)机制则通过为时间维度内的每个时间步分配权重,捕获其依赖信息,从而进一步提升检测效果。此外,利用MSTE方法构建了非平稳过程的因果关系图,揭示了变量之间的时间延迟并排除了间接因果关系。通过分析沉降器快分头封头穿孔过程,验证了AEM的有效性,且提升了决策过程的可解释性。

关键词: 过程控制, 安全, 无监督学习, 神经网络, 因果关系发现

CLC Number: