CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2781-2790.DOI: 10.11949/0438-1157.20241453

• Process system engineering • Previous Articles     Next Articles

Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering

Hanchuan ZHANG1(), Chao SHANG1(), Wenxiang LYU1, Dexiang HUANG1, Yaning ZHANG2   

  1. 1.Department of Automation, Tsinghua University, Beijing 100084, China
    2.PetroChina Planning & Engineering Institute, Beijing 100083, China
  • Received:2024-12-16 Revised:2025-01-19 Online:2025-07-09 Published:2025-06-25
  • Contact: Chao SHANG

基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法

张涵川1(), 尚超1(), 吕文祥1, 黄德先1, 张亚宁2   

  1. 1.清华大学自动化系,北京 100084
    2.中国石油天然气股份有限公司规划总院,北京 100083
  • 通讯作者: 尚超
  • 作者简介:张涵川(2001—),男,博士研究生,zhanghc24@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(62373211);中国石油科技攻关项目(2022DJ7107)

Abstract:

As a core production unit in the refinery, the catalytic cracking unit converts heavy oil into light oil products, which is an important link in improving the economic benefits of the refinery. Due to the complexity of the production process and the frequent variation in crude oil types in petrochemical industries of China, the prediction accuracy of catalytic cracking unit models based on process simulation often fails to meet the requirements of real-time optimization. To address this, a novel method for operating conditions classification and yield prediction based on unsupervised time series clustering is proposed in this study. By extracting valuable information from process data, the method achieved automatic classification and identification of operating conditions, thereby improving yield prediction performance under conditions of mixed crude oil processing. Through practical data analysis, the proposed method was demonstrated to possess strong predictive capability and generalization ability, enabling high-precision real-time yield prediction for catalytic cracking unit products. This approach can effectively meet the need for dynamic real-time optimization of catalytic cracking units, thereby benefiting the promotion of economic performance in refineries.

Key words: FCCU, TICC clustering algorithm, yield prediction, data-driven modeling, process control

摘要:

作为炼厂中的核心生产装置,催化裂化装置将重质油转化为轻质油品,是提升炼厂经济效益的重要环节。由于生产工艺的复杂性以及我国石化行业原油的频繁变化,基于流程模拟的催化裂化装置模型预测精度难以满足实时优化的需求。为此,本文提出了一种基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法,通过挖掘过程数据中的有益信息,实现工况的自动划分与识别,提高了在多原油混炼条件下的产率预测性能。通过对实际数据的应用分析,验证了所提方法具有良好的预测能力和泛化能力,能够实现催化裂化装置产品产率的高精度实时预测,从而有效地满足催化裂化装置动态实时优化的需求,有利于提升炼厂的经济效益。

关键词: 催化裂化装置, TICC聚类, 产率预测, 数据驱动建模, 过程控制

CLC Number: