CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2722-2732.DOI: 10.11949/0438-1157.20241457
• Process system engineering • Previous Articles Next Articles
Yifei WANG(), Jingjie REN, Mingshu BI, Haotian YE(
)
Received:
2024-12-16
Revised:
2025-01-18
Online:
2025-07-09
Published:
2025-06-25
Contact:
Haotian YE
通讯作者:
叶昊天
作者简介:
王一非(1999—),男,硕士研究生,yifeiwang@mail.dlut.edu.cn
基金资助:
CLC Number:
Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance[J]. CIESC Journal, 2025, 76(6): 2722-2732.
王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732.
反应参数 | 数值 |
---|---|
反应温度/K | 438.00 |
压力/MPa | 1.30 |
气相流率/(m3/h) | 6530.00 |
进料氧气体积分数/% | 21.00 |
有效体积/m3 | 82.24 |
Table 1 Initial reaction parameters
反应参数 | 数值 |
---|---|
反应温度/K | 438.00 |
压力/MPa | 1.30 |
气相流率/(m3/h) | 6530.00 |
进料氧气体积分数/% | 21.00 |
有效体积/m3 | 82.24 |
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0265 | 7.2113 | 2.63 |
环己基过氧化氢 | 0.1806 | 0.1290 | -28.56 |
环己醇 | 0.0556 | 0.0477 | -14.13 |
环己酮 | 0.0254 | 0.0202 | -20.55 |
酸 | 0.0141 | 0.0069 | -50.85 |
酯类 | 0.0060 | 0.0030 | -49.48 |
Table 2 Comparison of original kinetic model products (21% oxygen content feed)
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0265 | 7.2113 | 2.63 |
环己基过氧化氢 | 0.1806 | 0.1290 | -28.56 |
环己醇 | 0.0556 | 0.0477 | -14.13 |
环己酮 | 0.0254 | 0.0202 | -20.55 |
酸 | 0.0141 | 0.0069 | -50.85 |
酯类 | 0.0060 | 0.0030 | -49.48 |
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0157 | 7.1157 | 1.43 |
环己基过氧化氢 | 0.1826 | 0.1626 | -10.95 |
环己醇 | 0.0404 | 0.0394 | -12.38 |
环己酮 | 0.0247 | 0.0226 | -16.76 |
酸 | 0.0132 | 0.0101 | -23.48 |
酯类 | 0.0060 | 0.0020 | -66.67 |
Table 3 Comparison of original kinetic model products (30% oxygen content feed)
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0157 | 7.1157 | 1.43 |
环己基过氧化氢 | 0.1826 | 0.1626 | -10.95 |
环己醇 | 0.0404 | 0.0394 | -12.38 |
环己酮 | 0.0247 | 0.0226 | -16.76 |
酸 | 0.0132 | 0.0101 | -23.48 |
酯类 | 0.0060 | 0.0020 | -66.67 |
修正因子Ai | 数值 |
---|---|
α1 | 14.25 |
α2 | 0.65 |
α3 | 9.00 |
d4 | 30.00 |
d5 | 13.00 |
Table 4 Reaction rate correction coefficient
修正因子Ai | 数值 |
---|---|
α1 | 14.25 |
α2 | 0.65 |
α3 | 9.00 |
d4 | 30.00 |
d5 | 13.00 |
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0265 | 7.0425 | 0.23 |
环己基过氧化氢 | 0.1806 | 0.1827 | 1.18 |
环己醇 | 0.0556 | 0.0556 | 0.06 |
环己酮 | 0.0254 | 0.0254 | 0.12 |
酸 | 0.0141 | 0.0128 | -10.13 |
酯类 | 0.0060 | 0.0056 | -6.28 |
Table 5 Comparison of modified kinetic model products (21% oxygen content feed)
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0265 | 7.0425 | 0.23 |
环己基过氧化氢 | 0.1806 | 0.1827 | 1.18 |
环己醇 | 0.0556 | 0.0556 | 0.06 |
环己酮 | 0.0254 | 0.0254 | 0.12 |
酸 | 0.0141 | 0.0128 | -10.13 |
酯类 | 0.0060 | 0.0056 | -6.28 |
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0157 | 6.9953 | -0.29 |
环己基过氧化氢 | 0.1826 | 0.1883 | 3.11 |
环己醇 | 0.0404 | 0.0399 | -1.27 |
环己酮 | 0.0247 | 0.0246 | -0.60 |
酸 | 0.0132 | 0.0116 | -11.99 |
酯类 | 0.0060 | 0.0055 | -7.56 |
Table 6 Comparison of modified kinetic model products (30% oxygen content feed)
组分 | 实际值/ (kmol/m3) | 计算值/ (kmol/m3) | 相对 误差/% |
---|---|---|---|
环己烷 | 7.0157 | 6.9953 | -0.29 |
环己基过氧化氢 | 0.1826 | 0.1883 | 3.11 |
环己醇 | 0.0404 | 0.0399 | -1.27 |
环己酮 | 0.0247 | 0.0246 | -0.60 |
酸 | 0.0132 | 0.0116 | -11.99 |
酯类 | 0.0060 | 0.0055 | -7.56 |
F&EI范围 | 危险程度 |
---|---|
1~60 | 最轻 |
61~96 | 较轻 |
97~127 | 中等 |
128~158 | 较危险 |
≥159 | 极危险 |
Table 7 F&EI Index hazard classification
F&EI范围 | 危险程度 |
---|---|
1~60 | 最轻 |
61~96 | 较轻 |
97~127 | 中等 |
128~158 | 较危险 |
≥159 | 极危险 |
操作参数 | 原操作条件 | α=0.2 | α=0.5(最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 451.98 | 451.99 | 451.98 |
1釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.20 |
1釜有效体积/m3 | 82.24 | 72.06 | 72.00 | 72.00 |
1釜进气量/(m3/h) | 4700.00 | 6484.68 | 5873.27 | 5600 |
1釜进气含氧量/% | 21.00 | 41.90 | 44.36 | 44.56 |
2釜温度/K | 442.65 | 451.93 | 451.89 | 452.00 |
2釜压力/MPa | 1.30 | 1.20 | 1.20 | 1.20 |
2釜有效体积/m3 | 82.24 | 72.09 | 76.25 | 85.84 |
2釜进气量/(m3/h) | 5200.00 | 5722.72 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 42.30 | 44.61 | 45.00 |
3釜温度/K | 439.00 | 450.07 | 450.23 | 451.73 |
3釜压力/MPa | 1.30 | 1.21 | 1.20 | 1.22 |
3釜有效体积/m3 | 82.24 | 85.95 | 83.36 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5928.06 | 5600.00 | 5600.00 |
3釜进气含氧量/% | 21.00 | 38.94 | 44.52 | 45.00 |
Table 8 Comparison of operating parameters under different weights (Considering F&EI and TAC)
操作参数 | 原操作条件 | α=0.2 | α=0.5(最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 451.98 | 451.99 | 451.98 |
1釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.20 |
1釜有效体积/m3 | 82.24 | 72.06 | 72.00 | 72.00 |
1釜进气量/(m3/h) | 4700.00 | 6484.68 | 5873.27 | 5600 |
1釜进气含氧量/% | 21.00 | 41.90 | 44.36 | 44.56 |
2釜温度/K | 442.65 | 451.93 | 451.89 | 452.00 |
2釜压力/MPa | 1.30 | 1.20 | 1.20 | 1.20 |
2釜有效体积/m3 | 82.24 | 72.09 | 76.25 | 85.84 |
2釜进气量/(m3/h) | 5200.00 | 5722.72 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 42.30 | 44.61 | 45.00 |
3釜温度/K | 439.00 | 450.07 | 450.23 | 451.73 |
3釜压力/MPa | 1.30 | 1.21 | 1.20 | 1.22 |
3釜有效体积/m3 | 82.24 | 85.95 | 83.36 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5928.06 | 5600.00 | 5600.00 |
3釜进气含氧量/% | 21.00 | 38.94 | 44.52 | 45.00 |
操作参数 | 原操作条件 | α=0 | α=0.2(最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 443.1 | 430.00 | 431.00 |
1釜压力/MPa | 1.30 | 1.66 | 1.51 | 1.56 |
1釜有效体积/m3 | 82.24 | 72.48 | 79.58 | 85.89 |
1釜进气量/(m3/h) | 4700.00 | 5826.06 | 5600.00 | 5600.00 |
1釜进气含氧量/% | 21.00 | 43.14 | 44.99 | 44.83 |
2釜温度/K | 442.65 | 435.92 | 430.13 | 431.00 |
2釜压力/MPa | 1.30 | 1.44 | 1.35 | 1.25 |
2釜有效体积/m3 | 82.24 | 80.77 | 85.96 | 86.99 |
2釜进气量/(m3/h) | 5200.00 | 5658.47 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 44.00 | 45.00 | 45.00 |
3釜温度/K | 439.00 | 451.90 | 451.90 | 450.50 |
3釜压力/MPa | 1.30 | 1.55 | 1.53 | 1.55 |
3釜有效体积/m3 | 82.24 | 85.97 | 84.24 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5623.81 | 5600.00 | 5600.00 |
3釜进气含氧量/% | 21.00 | 21.86 | 45.00 | 45.00 |
Table 9 Comparison of operating parameters under different weights (Considering tail oxygen and TAC)
操作参数 | 原操作条件 | α=0 | α=0.2(最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 443.1 | 430.00 | 431.00 |
1釜压力/MPa | 1.30 | 1.66 | 1.51 | 1.56 |
1釜有效体积/m3 | 82.24 | 72.48 | 79.58 | 85.89 |
1釜进气量/(m3/h) | 4700.00 | 5826.06 | 5600.00 | 5600.00 |
1釜进气含氧量/% | 21.00 | 43.14 | 44.99 | 44.83 |
2釜温度/K | 442.65 | 435.92 | 430.13 | 431.00 |
2釜压力/MPa | 1.30 | 1.44 | 1.35 | 1.25 |
2釜有效体积/m3 | 82.24 | 80.77 | 85.96 | 86.99 |
2釜进气量/(m3/h) | 5200.00 | 5658.47 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 44.00 | 45.00 | 45.00 |
3釜温度/K | 439.00 | 451.90 | 451.90 | 450.50 |
3釜压力/MPa | 1.30 | 1.55 | 1.53 | 1.55 |
3釜有效体积/m3 | 82.24 | 85.97 | 84.24 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5623.81 | 5600.00 | 5600.00 |
3釜进气含氧量/% | 21.00 | 21.86 | 45.00 | 45.00 |
操作参数 | 原操作 条件 | α=0.2 | α=0.6 (最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 451.91 | 451.91 | 451.97 |
1釜压力/MPa | 1.30 | 1.40 | 1.21 | 1.21 |
1釜有效体积/m3 | 82.24 | 72.13 | 72.13 | 72.19 |
1釜进气量/(m3/h) | 4700.00 | 6889.14 | 6945.75 | 6929.90 |
1釜进气含氧量/% | 21.00 | 21.84 | 21.84 | 23.88 |
2釜温度/K | 442.65 | 430.12 | 435.06 | 447.57 |
2釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.27 |
2釜有效体积/m3 | 82.24 | 72.12 | 72.24 | 72.01 |
2釜进气量/(m3/h) | 5200.00 | 5649.47 | 6611.56 | 6913.77 |
2釜进气含氧量/% | 21.00 | 32.68 | 34.02 | 22.11 |
3釜温度/K | 439.00 | 451.90 | 451.90 | 451.94 |
3釜压力/MPa | 1.30 | 1.54 | 1.22 | 1.23 |
3釜有效体积/m3 | 82.24 | 85.90 | 85.89 | 72.16 |
3釜进气量/(m3/h) | 5300.00 | 5607.54 | 5613.06 | 5685.49 |
3釜进气含氧量/% | 21.00 | 28.84 | 38.94 | 20.72 |
Table 10 Comparison of operating parameters under different weights (Considering F&EI and tail oxygen)
操作参数 | 原操作 条件 | α=0.2 | α=0.6 (最优) | α=0.8 |
---|---|---|---|---|
1釜温度/K | 439.00 | 451.91 | 451.91 | 451.97 |
1釜压力/MPa | 1.30 | 1.40 | 1.21 | 1.21 |
1釜有效体积/m3 | 82.24 | 72.13 | 72.13 | 72.19 |
1釜进气量/(m3/h) | 4700.00 | 6889.14 | 6945.75 | 6929.90 |
1釜进气含氧量/% | 21.00 | 21.84 | 21.84 | 23.88 |
2釜温度/K | 442.65 | 430.12 | 435.06 | 447.57 |
2釜压力/MPa | 1.30 | 1.22 | 1.20 | 1.27 |
2釜有效体积/m3 | 82.24 | 72.12 | 72.24 | 72.01 |
2釜进气量/(m3/h) | 5200.00 | 5649.47 | 6611.56 | 6913.77 |
2釜进气含氧量/% | 21.00 | 32.68 | 34.02 | 22.11 |
3釜温度/K | 439.00 | 451.90 | 451.90 | 451.94 |
3釜压力/MPa | 1.30 | 1.54 | 1.22 | 1.23 |
3釜有效体积/m3 | 82.24 | 85.90 | 85.89 | 72.16 |
3釜进气量/(m3/h) | 5300.00 | 5607.54 | 5613.06 | 5685.49 |
3釜进气含氧量/% | 21.00 | 28.84 | 38.94 | 20.72 |
操作参数 | 原操作条件 | α=0.2; β=0.6 | α=0.6; β=0.7 | α=0.9; β=0.6(最优) | α=0.9; β=0.9 |
---|---|---|---|---|---|
1釜温度/K | 439.00 | 448.79 | 451.25 | 443.78 | 451.98 |
1釜压力/MPa | 1.30 | 1.23 | 1.21 | 1.20 | 1.20 |
1釜有效体积/m3 | 82.24 | 72.12 | 72.00 | 86.00 | 84.89 |
1釜进气量/(m3/h) | 4700.00 | 6194.04 | 5600.00 | 5600.00 | 5600.00 |
1釜进气含氧量/% | 21.00 | 44.63 | 43.57 | 44.89 | 44.90 |
2釜温度/K | 442.65 | 445.49 | 443.96 | 447.46 | 451.76 |
2釜压力/MPa | 1.30 | 1.27 | 1.23 | 1.20 | 1.20 |
2釜有效体积/m3 | 82.24 | 72.03 | 72.25 | 85.98 | 85.98 |
2釜进气量/(m3/h) | 5200.00 | 5685.25 | 5600.00 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 44.12 | 44.56 | 45.00 | 45.00 |
3釜温度/K | 439.00 | 452.00 | 452.00 | 452.00 | 451.60 |
3釜压力/MPa | 1.30 | 1.49 | 1.54 | 1.43 | 1.20 |
3釜有效体积/m3 | 82.24 | 85.93 | 86.00 | 85.98 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5685.25 | 5600.03 | 5600.50 | 5600.00 |
3釜进气含氧量/% | 21.00 | 43.80 | 44.04 | 45.00 | 45.00 |
Table 11 Comparison of operating parameters under different weights (Considering F&EI, TAC and tail oxygen)
操作参数 | 原操作条件 | α=0.2; β=0.6 | α=0.6; β=0.7 | α=0.9; β=0.6(最优) | α=0.9; β=0.9 |
---|---|---|---|---|---|
1釜温度/K | 439.00 | 448.79 | 451.25 | 443.78 | 451.98 |
1釜压力/MPa | 1.30 | 1.23 | 1.21 | 1.20 | 1.20 |
1釜有效体积/m3 | 82.24 | 72.12 | 72.00 | 86.00 | 84.89 |
1釜进气量/(m3/h) | 4700.00 | 6194.04 | 5600.00 | 5600.00 | 5600.00 |
1釜进气含氧量/% | 21.00 | 44.63 | 43.57 | 44.89 | 44.90 |
2釜温度/K | 442.65 | 445.49 | 443.96 | 447.46 | 451.76 |
2釜压力/MPa | 1.30 | 1.27 | 1.23 | 1.20 | 1.20 |
2釜有效体积/m3 | 82.24 | 72.03 | 72.25 | 85.98 | 85.98 |
2釜进气量/(m3/h) | 5200.00 | 5685.25 | 5600.00 | 5600.00 | 5600.00 |
2釜进气含氧量/% | 21.00 | 44.12 | 44.56 | 45.00 | 45.00 |
3釜温度/K | 439.00 | 452.00 | 452.00 | 452.00 | 451.60 |
3釜压力/MPa | 1.30 | 1.49 | 1.54 | 1.43 | 1.20 |
3釜有效体积/m3 | 82.24 | 85.93 | 86.00 | 85.98 | 85.99 |
3釜进气量/(m3/h) | 5300.00 | 5685.25 | 5600.03 | 5600.50 | 5600.00 |
3釜进气含氧量/% | 21.00 | 43.80 | 44.04 | 45.00 | 45.00 |
[1] | 赵劲松, 粟镇宇, 贺丁, 等. 化工过程安全管理[M]. 北京: 化学工业出版社, 2021: 1-10. |
Zhao J S, Su Z Y, He D, et al. Safety Management of Chemical Process[M]. Beijing: Chemical Industry Press, 2021: 1-10. | |
[2] | 王杭州, 陈丙珍, 赵劲松, 等. 面向本质安全化的化工过程设计多稳态及其稳定性分析[M]. 北京: 清华大学出版社, 2017: 166-167. |
Wang H Z, Chen B Z, Zhao J S, et al. Inherently Safer Design Oriented Analysis of Steady-state Multiplicity and Stability of Chemical Processes[M]. Beijing: Tsinghua University Press, 2017: 166-167. | |
[3] | Swuste P, Theunissen J, Schmitz P, et al. Process safety indicators, a review of literature[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 162-173. |
[4] | 赵劲松. 化工过程安全[M]. 北京: 化学工业出版社, 2015: 1-7. |
Zhao J S. Chemical Process Safety[M]. Beijing: Chemical Industry Press, 2015: 1-7. | |
[5] | Sanders R E. Chemical Process Safety[M]. 4th ed. Oxford·Waltham: Elsevier, 2015. |
[6] | Kletz T. Inherently safer design: the growth of an idea[J]. Process Safety Progress, 1996: 15(1): 5-8. |
[7] | Chen J R. An inherently safer process of cyclohexane oxidation using pure oxygen: an example of how better process safety leads to better productivity[J]. Process Safety Progress, 2004, 23(1): 72-81. |
[8] | 周权. 环己烷无催化氧化工艺优化研究[D]. 大连: 大连理工大学, 2006. |
Zhou Q. Study on optimization of cyclohexane non-catalytic oxidation process[D]. Dalian: Dalian University of Technology, 2006. | |
[9] | 尹华清, 罗和安. 环己烷富氧氧化反应器内气相空间危险性研究[J]. 湖南大学学报(自然科学版), 2009, 36(5): 63-66. |
Yin H Q, Luo H A. Study of the risks of gas phases inside the reator of cyclohexane oxidation with oxygen-enriched air[J]. Journal of Hunan University (Natural Sciences), 2009, 36(5): 63-66. | |
[10] | 郑婷, 李秀喜, 曹丽琦. 基于CFD的环己烷无催化氧化反应工况分析[C]//2019年中国过程系统工程年会论文集. 杭州, 2019: 150-158. |
Zheng T, Li X X, Cao L Q.Analysis of operating conditions of cyclohexane non-catalytic oxidation by CFD[C].Proceedings of the 2019 China Annual Conference on Process Systems Engineering.Hangzhou,China,2019:150-158. | |
[11] | 李秀喜, 曹丽琦, 王兴. 环己烷氧化生产环己酮过程建模与参数分析[J]. 清华大学学报(自然科学版), 2018, 58(5): 523-528. |
Li X X, Cao L Q, Wang X. Process modeling and analysis of the parameters for oxidation of cyclohexane into cyclohexanone[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(5): 523-528. | |
[12] | Huo H H, Guo B R, Ma G X, et al. Recent progress in strategies to enhance the photocatalytic oxidation performance of cyclohexane[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113504. |
[13] | Zhang X H, Chen Z, Chen J, et al. Liquid-phase oxidation of cyclohexane with air in a microreactor: kinetics and process intensification[J]. Chemical Engineering Science, 2024, 288: 119777. |
[14] | 陈纪忠, 费黎明, 范镇, 等. 环己烷液相无催化剂的氧化动力学研究[J]. 化学反应工程与工艺, 1992, 8(3): 237-245. |
Chen J Z, Fei L M, Fan Z, et al. A study on the kinetics of liquid phase oxidation of cyclohexane without catalyst[J]. Chemical Reaction Engineering and Technology, 1992, 8(3): 237-245. | |
[15] | Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2005. |
[16] | Aspen Technology, Inc. Aspen Plus User Guide[EB/OL]. (2020-11-03). |
[17] | 孙兰义. 化工过程模拟实训: Aspen Plus教程[M]. 2版. 北京: 化学工业出版社, 2017. |
Sun L Y. Chemical Process Simulation Training: Aspen Plus Course[M]. 2nd ed. Beijing: Chemical Industry Press, 2017. | |
[18] | Pan D T, Li G X, Su Y H, et al. Kinetic study for the oxidation of cyclohexanol and cyclohexanone with nitric acid to adipic acid[J]. Chinese Journal of Chemical Engineering, 2021, 29: 183-189. |
[19] | Li G X, Liu S E, Dou X Y, et al. Synthesis of adipic acid through oxidation of K/A oil and its kinetic study in a microreactor system[J]. AIChE Journal, 2020, 66(9): e16289. |
[20] | Pohorecki R, Moniuk W, Wierzchowski P T. Kinetic model of uncatalyzed oxidation of cyclohexane[J]. Chemical Engineering Research and Design, 2009, 87(3): 349-356. |
[21] | Silke E J, Pitz W J, Westbrook C K, et al. Detailed chemical kinetic modeling of cyclohexane oxidation[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3761-3775. |
[22] | Gao X M, Abdul Raman A A, Hizaddin H F, et al. Review on the inherently safer design for chemical processes: past, present and future[J]. Journal of Cleaner Production, 2021, 305: 127154. |
[23] | AIChE. Dow's Fire & Explosion Index Hazard Classification Guide: AIChE/Dow's[M]. Hoboken, NJ, USA: John Wiley & Sons Inc, 1994 |
[24] | Willett M. Oxygen sensing for industrial safety - evolution and new approaches[J]. Sensors, 2014, 14(4): 6084-6103. |
[25] | 王兴. 环己烷无催化氧化反应过程模拟与关键参数分析[D]. 广州: 华南理工大学, 2013. |
Wang X. Simulation and key parameters analysis of cyclohexane non-catalytic oxidation reaction process[D]. Guangzhou: South China University of Technology, 2013. | |
[26] | Nelson D A, Kirkwood R L, Douglas J M. Conceptual design of chemical processes[J]. Advances in AI and Simulation, 1989,20:180-184. |
[27] | Mei W G, Zhai R R, Zhao Y X, et al. Exergoeconomic analysis and multi-objective optimization using NSGA-Ⅱ in a novel dual-stage Selexol process of integrated gasification combined cycle[J]. Energy, 2024, 286: 129663. |
[28] | Patro S G K, Sahu K K. Normalization: a preprocessing stage[J]. Iarjset, 2015: 20-22. |
[29] | Abrahamsen E B, Milazzo M F, Selvik J T, et al. Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process[J]. Reliability Engineering & System Safety, 2020, 198: 106811. |
[1] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
[2] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
[3] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
[4] | Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization [J]. CIESC Journal, 2025, 76(6): 2626-2637. |
[5] | Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm [J]. CIESC Journal, 2025, 76(6): 3104-3114. |
[6] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
[7] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
[8] | Minggang GUO, Xiaohang YANG, Yan DAI, Panpan MI, Shixin MA, Gaohong HE, Wu XIAO, Fujun CUI. Optimal design of integration process for helium extraction from helium-poor pipeline natural gas with diversified products [J]. CIESC Journal, 2025, 76(5): 2251-2261. |
[9] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
[10] | Duankanghui YANG, Wenjin ZHOU, Linlin LIU. Synthesis of hydrogen network considering group cascade layout of compressors [J]. CIESC Journal, 2025, 76(3): 1102-1110. |
[11] | Zhongqing CHEN, Jiaxu LIU, Yanyu WANG, Hongquan JING, Cuihong HOU, Lingbo QU. Effect of K-B-Al ternary system on the melting characteristics and glass structure of tailings [J]. CIESC Journal, 2025, 76(3): 1323-1333. |
[12] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
[13] | Ye YANG, Jiangang LU. Mooney viscosity prediction modeling based on fusion Transformer [J]. CIESC Journal, 2025, 76(1): 266-282. |
[14] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
[15] | Yushi LI, Yuan CHEN, Yuntang LI, Xudong PENG, Bingqing WANG, Xiaolu LI. Intelligent optimization and deformation analysis of novel flexible dam foil face gas seal [J]. CIESC Journal, 2025, 76(1): 324-334. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||