CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6439-6452.DOI: 10.11949/0438-1157.20250266
• Separation engineering • Previous Articles Next Articles
Mengyue WEI1(
), Xinru ZHANG1,2(
), Yonghong WANG1,2, Jinping LI1,2
Received:2025-03-17
Revised:2025-05-05
Online:2026-01-23
Published:2025-12-31
Contact:
Xinru ZHANG
魏梦玥1(
), 张新儒1,2(
), 王永洪1,2, 李晋平1,2
通讯作者:
张新儒
作者简介:魏梦玥(1999—),女,硕士研究生,18234632147@163.com
基金资助:CLC Number:
Mengyue WEI, Xinru ZHANG, Yonghong WANG, Jinping LI. Boosting CO2 separation of Pebax membranes with synergistic effect of vacancies and defects[J]. CIESC Journal, 2025, 76(12): 6439-6452.
魏梦玥, 张新儒, 王永洪, 李晋平. 利用空位和缺陷工程协同效应提高Pebax膜的CO2分离[J]. 化工学报, 2025, 76(12): 6439-6452.
Add to citation manager EndNote|Ris|BibTeX
| Sample | BET surface area/ (m2·g-1) | Total pore volume/(cm3·g-1) | Average pore diameter/nm |
|---|---|---|---|
| Fe-MoS2 | 0.4226 | 0.0063 | — |
| P-MoS2 | 3.9940 | 0.2658 | 26.6217 |
| AHMT-MoS2 | 6.6226 | 0.0297 | 17.9186 |
Table 1 Porous structure parameters of materials
| Sample | BET surface area/ (m2·g-1) | Total pore volume/(cm3·g-1) | Average pore diameter/nm |
|---|---|---|---|
| Fe-MoS2 | 0.4226 | 0.0063 | — |
| P-MoS2 | 3.9940 | 0.2658 | 26.6217 |
| AHMT-MoS2 | 6.6226 | 0.0297 | 17.9186 |
Fig.8 Effect of (a) Fe to Mo different molar ratios in Fe-MoS2, (b) Fe to Mo different molar ratios in P-MoS2, (c) AHMT to P-MoS2 different the mass ratio in AHMT-MoS2 and (d) AHMT-MoS2 loading on the gas separation performance of the membranes
Fig.9 Effect of the wet coating thickness of the selective layer on the CO2 permeance (a) and CO2/N2 selectivity (b) of pure Pebax membrane and Pebax/AHMT-MoS2
Fig.11 Effect of the operating temperature on the CO2 permeance (a) and the CO2/N2 selectivity (b) of the pure Pebax membrane and Pebax/AHMT-MoS2; (c) Arrhenius plot of ln (CO2 permeability) vs 1000/T and (d) Arrhenius plot of ln (N2 permeability) vs 1000/T
Fig.14 Comparison of Pebax/AHMT-MoS2 gas separation performance: (a) percentage incremental increase vs reported Pebax-based and (c) its upper bound plot; (b) percentage incremental increase vs reported lamellar fillers and (d) its upper bound plot
| [1] | Liu Y L, Rui Z H. A storage-driven CO2 EOR for a net-zero emission target[J]. Engineering, 2022, 18: 79-87. |
| [2] | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
| [3] | Li W, Zhang S H, Lu C. Exploration of China's net CO2 emissions evolutionary pathways by 2060 in the context of carbon neutrality[J]. Science of the Total Environment, 2022, 831: 154909. |
| [4] | Wang Y T, Jalife S, Robles A, et al. Efficient CO2/CO separation by pressure swing adsorption using an intrinsically nanoporous molecular crystal[J]. ACS Applied Nano Materials, 2022, 5(10): 14021-14026. |
| [5] | Dong S L, Wang Z, Sheng M L, et al. High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation[J]. Journal of Membrane Science, 2020, 610: 118221. |
| [6] | Dong H X, Shi F Y, Yi H J, et al. Selective enhancement mechanism of CO2/N2 separation in Pebax mixed matrix membrane doped with oriented optional magnetic two-dimensional carbon nitride[J]. Journal of Membrane Science, 2025, 719: 123740. |
| [7] | Wang Y H, Jin Z, Zhang X R, et al. Enhancing CO2 separation performance of mixed matrix membranes by incorporation of L-cysteine-functionalized MoS2 [J]. Separation and Purification Technology, 2022, 297: 121560. |
| [8] | Chen D K, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257. |
| [9] | Wang Y H, Hu F N, Zhang X R, et al. Enhancing CO2-facilitated transport in PVAm membranes through the synergistic effect of porous molybdenum disulfide and mobilizable sulfonic groups[J]. Journal of Materials Chemistry A, 2025, 13(4): 3132-3145. |
| [10] | Luo Z Y, Ge J J, Liu C P, et al. Engineering the HER catalytic behavior of heteroatom-doped molybdenum disulfide via versatile partial cation exchange[J]. Journal of Energy Chemistry, 2020, 41: 15-19. |
| [11] | Li Z X, Sun M, Yang J L, et al. High-performance iron-doped molybdenum disulfide photocatalysts enhance peroxymonosulfate activation for water decontamination[J]. Chemical Engineering Journal, 2022, 446: 137380. |
| [12] | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance[J]. Journal of Membrane Science, 2019, 589: 117246. |
| [13] | Song C F, Li R, Fan Z C, et al. CO2/N2 separation performance of Pebax/MIL-101 and Pebax/NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation[J]. Separation and Purification Technology, 2020, 238: 116500. |
| [14] | Yao Z Y, Zhang W, Ren X C, et al. A volume self-regulation MoS2 superstructure cathode for stable and high mass-loaded Zn-ion storage[J]. ACS Nano, 2022, 16(8): 12095-12106. |
| [15] | Li Y, Zhang R P, Zhou W, et al. Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage[J]. ACS Nano, 2019, 13(5): 5533-5540. |
| [16] | Wang Y H, Zhang L, Zhang X R, et al. Mixed matrix membranes consisting of PDMS and IL@MoS2 for enhancing 2-phenylethanol pervaporation separation[J]. Journal of Membrane Science, 2024, 706: 122947. |
| [17] | Zhou L, He B Z, Yang Y, et al. Facile approach to surface functionalized MoS2 nanosheets[J]. RSC Advances, 2014, 4(61): 32570-32578. |
| [18] | Chou S S, De M, Kim J, et al. Ligand conjugation of chemically exfoliated MoS2 [J]. Journal of the American Chemical Society, 2013, 135(12): 4584-4587. |
| [19] | Pan D X, Zhang J Q, Xue P Q, et al. Mixed matrix membranes with excellent CO2 capture induced by nano-carbon hybrids[J]. ChemNanoMat, 2017, 3(8): 560-568. |
| [20] | Wu Y D, Zhao D, Chen S H, et al. The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance[J]. Separation and Purification Technology, 2021, 261: 118243. |
| [21] | Wang Y H, Ma Z W, Zhang X R, et al. Mixed-matrix membranes consisting of Pebax and novel nitrogen-doped porous carbons for CO2 separation[J]. Journal of Membrane Science, 2022, 644: 120182. |
| [22] | Zhang Q, Zhou M, Liu X F, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612. |
| [23] | Guo H, Lian S H, Li R, et al. Preparation of mixed matrix membranes by layered double hydroxides of amino acid intercalation and Pebax for ameliorated CO2 separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109399. |
| [24] | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation[J]. Journal of Membrane Science, 2020, 599: 117828. |
| [25] | 靳卓, 王永洪, 张新儒, 等. Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J]. 化工学报, 2022, 73(10): 4527-4538. |
| Jin Z, Wang Y H, Zhang X R, et al. Preparation of Pebax/a-MoS2/MIP-202 mixed matrix membranes for CO2 separation[J]. CIESC Journal, 2022, 73(10): 4527-4538. | |
| [26] | Bamonte S, Shubhashish S, Khanna H, et al. Magnetically doped molybdenum disulfide layers for enhanced carbon dioxide capture[J]. ACS Applied Materials & Interfaces, 2022, 14(24): 27799-27813. |
| [27] | Li F F, Yun S S, Gui L P, et al. Hydrazino-containing Zr-MOF for enhanced Lewis acid-base catalysis of CO2 fixation into cyclocarbonate[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114311. |
| [28] | Liu Y C, Chen C Y, Lin G S, et al. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement[J]. Journal of Membrane Science, 2019, 582: 358-366. |
| [29] | Pan F S, Ding H, Li W D, et al. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets[J]. Journal of Membrane Science, 2018, 545: 29-37. |
| [30] | Xiang L, Pan Y C, Jiang J L, et al. Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO2 permeance and selectivity for CO2/N2 and CO2/CH4 [J]. Chemical Engineering Science, 2017, 160: 236-244. |
| [31] | Nobakht D, Abedini R. Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107568. |
| [32] | Liao J Y, Wang Z, Gao C Y, et al. A high performance PVAm–HT membrane containing high-speed facilitated transport channels for CO2 separation[J]. Journal of Materials Chemistry A, 2015, 3(32): 16746-16761. |
| [33] | Ahmadpour E, Shamsabadi A A, Behbahani R M, et al. Study of CO2 separation with PVC/Pebax composite membrane[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 518-523. |
| [34] | Xu S S, Huang H L, Guo X Y, et al. Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC[J]. Separation and Purification Technology, 2021, 257: 117979. |
| [35] | Ishaq S, Tamime R, Bilad M R, et al. Mixed matrix membranes comprising of polysulfone and microporous Bio-MOF-1: preparation and gas separation properties[J]. Separation and Purification Technology, 2019, 210: 442-451. |
| [36] | Solimando X, Lherbier C, Babin J, et al. Pseudopeptide bioconjugate additives for CO2 separation membranes[J]. Polymer International, 2016, 65(12): 1464-1473. |
| [37] | Gao J, Mao H Z, Jin H, et al. Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation[J]. Microporous and Mesoporous Materials, 2020, 297: 110030. |
| [38] | Jiao C L, Li Z D, Li X X, et al. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8[J]. Separation and Purification Technology, 2021, 259: 118190. |
| [39] | Mahdi E K, Amir M N, et al. Pebax/NC-PCL membrane containing well-distributed PCL grafted biodegradable nano-chitosan particles for CO2 separation[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2025, 701: 135576. |
| [40] | Khalilinejad I, Kargari A, Sanaeepur H, et al. Preparation and characterization of (Pebax 1657 silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation[J]. Chemistry and Chemical Engineering Quarterly, 2017, 30(4): 567‑582. |
| [41] | Zhang Y H, Tang Y P, Li X Y, et al. Pebax mixed-matrix membrane with highly dispersed ZIF-8@CNTs to enhance CO2/N2 separation[J].ACS Omega, 2021, 6(13):7595-7604. |
| [42] | Tang P H, So P B, Li W H, et al. Carbon dioxide enrichment PEBAX/MOF composite membrane for CO2 separation[J]. Membranes, 2021, 11(6): 404‑04. |
| [43] | Wang Y H, Ren, Y X, Cao Y, et al. Engineering HOF‑based mixed‑matrix membranes for efficient CO2 separation[J]. Nano Research, 2023, 15:50. |
| [44] | Li P L, Ma W Z, Zhong J, et al. Research on triazine‑based nitrogen‑doped porous carbon/Pebax mixed‑matrix membranes for CO2 separation and its gas transport mechanism[J]. Journal of Nanoparticle Research, 2024, 26:108. |
| [45] | Cho E H, Kim K B, Rhim J W, et al. Transport properties of PEBAX blended membranes with PEG and glutaraldehyde for SO2 and other gases[J]. Polymer Korea, 2014, 38: 1‑8. |
| [46] | Habibzare S, Asghari M, Djirsarai A, et al. Nano‑composite PEBAX®/PEG membranes: effect of MWNT filler on CO2/CH4 separation[J]. International Journal of Nanotechnology Development, 2014, 3(6): 45‑58. |
| [47] | Zou C C, Li Q Q, Hua Y Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials and Interfaces, 2017, 9(34): 29093-29100. |
| [48] | Rahman M M, Filiz V, Shishatskiy S, et al. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation[J]. Journal of Membrane Science, 2013, 452: 215‑229. |
| [49] | Zhang S, Li L, Wang W, et al. Experimental study on surfactant‑based pressure‑reduction and injection enhancement in a certain oilfield[J]. Petroleum Exploration and Development, 2017, 44(2): 123‑132. |
| [50] | Zhang X, Peng G, Luo W J, et al. Pebax membranes-based on different two-dimensional materials for CO2 capture: a review[J]. Separation and Purification Technology, 2024, 340: 126744. |
| [51] | Guo F, Xiao W, Ma C, et al. Constructing gas transmission pathways in two‑dimensional composite material ZIF‑8@BNNS mixed‑matrix membranes to enhance CO2/N2 separation performance[J]. Membranes, 2023, 13(4): 444. |
| [52] | Liu Y C, Chen C Y, Lin G S, et al. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement[J]. Journal of Membrane Science, 2019, 582: 358-366. |
| [53] | Hou J P, Li X Q, Guo R L, et al. Mixed matrix membranes with fast and selective transport pathways for efficient CO2 separation[J]. Nanotechnology, 2018, 29: 1361. |
| [54] | Luo W J, Niu Z H, Mu P, et al. Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2 [J]. Macromolecules, 2022, 55(21): 9851-9859. |
| [55] | Casadei R, Baschetti M G, Yoo M J, et al. Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture[J]. Membranes, 2020, 10(8):188. |
| [1] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [2] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [3] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [4] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [5] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [6] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [7] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [8] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [9] | Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution [J]. CIESC Journal, 2025, 76(8): 4095-4107. |
| [10] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [11] | Minghu JIANG, Fan WANG, Lei XING, Lixin ZHAO, Xinya LI, Dingwei CHEN. Influence of gas-containing on flow field characteristics and separation performance in oil-water separation string [J]. CIESC Journal, 2025, 76(7): 3361-3372. |
| [12] | Zhao GAO, Xi WU, Dan XIA, Linzhou ZHANG. Development of thermodynamics and separation unit modules of petroleum refining molecular management platform [J]. CIESC Journal, 2025, 76(7): 3212-3225. |
| [13] | Bilin LIANG, Qian YU, Siqi JIA, Fang LI, Qiming LI. Structural modulation and gas separation performance of Ni-MOF-74 metal-organic framework membranes [J]. CIESC Journal, 2025, 76(6): 2714-2721. |
| [14] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [15] | Di ZHU, Shoujian GAO, Wangxi FANG, Jian JIN. Construction of PES membranes with sponge-like pores and stable super-hydrophilicity through vapor-induced phase separation for oil-in-water emulsion separation [J]. CIESC Journal, 2025, 76(5): 2397-2409. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||