CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4563-4577.DOI: 10.11949/0438-1157.20250394
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Xuewen LI1(
), Zhihong WANG1(
), Yang GAO2, Ming'ou WU3, Wenhao MA1, Renmin TAN1
Received:2025-04-15
Revised:2025-05-13
Online:2025-10-23
Published:2025-09-25
Contact:
Zhihong WANG
李雪雯1(
), 王治红1(
), 高阳2, 吴明鸥3, 马文皓1, 谭仁敏1
通讯作者:
王治红
作者简介:李雪雯(2001—),女,硕士研究生,2014432795@qq.com
CLC Number:
Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology[J]. CIESC Journal, 2025, 76(9): 4563-4577.
李雪雯, 王治红, 高阳, 吴明鸥, 马文皓, 谭仁敏. 基于热泵技术的醇胺法脱硫再生系统多目标优化研究[J]. 化工学报, 2025, 76(9): 4563-4577.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 | |
|---|---|---|
| 组成 | 甲烷 | 0.8692 |
| 乙烷 | 0.0393 | |
| 丙烷 | 0.0093 | |
| 异丁烷 | 0.0026 | |
| 正丁烷 | 0.0029 | |
| 异戊烷 | 0.0014 | |
| 正戊烷 | 0.0012 | |
| 正己烷 | 0.0018 | |
| H2O | 0.0122 | |
| 氮气 | 0.0016 | |
| H2S | 0.0172 | |
| CO2 | 0.0413 | |
| 温度/℃ | 25 | |
| 压力/kPa | 600.0 | |
| 摩尔流量/(kmol/h) | 1250.0 | |
| 质量流量/(kg/h) | 23583.8 | |
| 汽相分率 | 0.9932 | |
| 质量密度/(kg/m3) | 4.6751 | |
Table 1 Composition and key parameters of feed natural gas
| 参数 | 数值 | |
|---|---|---|
| 组成 | 甲烷 | 0.8692 |
| 乙烷 | 0.0393 | |
| 丙烷 | 0.0093 | |
| 异丁烷 | 0.0026 | |
| 正丁烷 | 0.0029 | |
| 异戊烷 | 0.0014 | |
| 正戊烷 | 0.0012 | |
| 正己烷 | 0.0018 | |
| H2O | 0.0122 | |
| 氮气 | 0.0016 | |
| H2S | 0.0172 | |
| CO2 | 0.0413 | |
| 温度/℃ | 25 | |
| 压力/kPa | 600.0 | |
| 摩尔流量/(kmol/h) | 1250.0 | |
| 质量流量/(kg/h) | 23583.8 | |
| 汽相分率 | 0.9932 | |
| 质量密度/(kg/m3) | 4.6751 | |
| 序号 | 目标函数 | 原始值 |
|---|---|---|
| 1 | 再生塔顶H2S质量流量Qm1/(kg/d) | 17505.7 |
| 2 | 流股换热器基本面积A/m2 | — |
| 3 | 碳排放水平(折合CO2质量流量)Qm2/(kg/d) | 17715.0 |
Table 2 Objective functions and baseline values
| 序号 | 目标函数 | 原始值 |
|---|---|---|
| 1 | 再生塔顶H2S质量流量Qm1/(kg/d) | 17505.7 |
| 2 | 流股换热器基本面积A/m2 | — |
| 3 | 碳排放水平(折合CO2质量流量)Qm2/(kg/d) | 17715.0 |
| 序号 | 决策变量 | 决策范围 |
|---|---|---|
| 1 | 再生塔进料温度Tin/℃ | 85~95 |
| 2 | 再生塔塔板数NDC | 18~22 |
| 3 | 再生塔进料位置FDC | -2~+2 |
Table 3 Decision variables and ranges
| 序号 | 决策变量 | 决策范围 |
|---|---|---|
| 1 | 再生塔进料温度Tin/℃ | 85~95 |
| 2 | 再生塔塔板数NDC | 18~22 |
| 3 | 再生塔进料位置FDC | -2~+2 |
| 因素水平 | 决策变量 | ||
|---|---|---|---|
| Tin/℃ | NDC | FDC | |
| -1 | 85 | 18 | -2 |
| 0 | 90 | 20 | 0 |
| 1 | 95 | 22 | 2 |
Table 4 Three-factor levels
| 因素水平 | 决策变量 | ||
|---|---|---|---|
| Tin/℃ | NDC | FDC | |
| -1 | 85 | 18 | -2 |
| 0 | 90 | 20 | 0 |
| 1 | 95 | 22 | 2 |
| 项目 | Qm1/(kg/d) | A/m2 | Qm2/(kg/d) | |||
|---|---|---|---|---|---|---|
| R2= 0.9768 | R2= 0.9983 | R2= 0.9997 | ||||
| F值 | p值 | F值 | p值 | F值 | p值 | |
| 模型 | 32.81 | <0.0001 | 459.19 | <0.0001 | 2248.33 | <0.0001 |
| a | 0.03 | 0.87 | 3485.95 | <0.0001 | 18964.47 | <0.0001 |
| b | 43.04 | 0.0003 | 41.39 | 0.0004 | 2.99 | 0.13 |
| c | 191.62 | <0.0001 | 135.84 | <0.0001 | 6.97 | 0.03 |
| ab | 0.04 | 0.85 | 0.16 | 0.70 | 4.65 | 0.07 |
| ac | 0.0002 | 0.99 | 0.69 | 0.43 | 11.83 | 0.01 |
| bc | 20.08 | 0.0030 | 5.03 | 0.06 | 1.50 | 0.26 |
| a2 | 0.14 | 0.72 | 451.12 | <0.0001 | 1230.85 | <0.0001 |
| b2 | 6.73 | 0.04 | 0.25 | 0.63 | 0.32 | 0.59 |
| c2 | 31.41 | 0.0008 | 3.70 | 0.10 | 0.19 | 0.67 |
| 差异性 | 0.3800 | 0.7800 | 70.9800 | 0.0006 | 34.6600 | 0.0030 |
Table 5 Summary of analysis of variance (ANOVA) for the regression models
| 项目 | Qm1/(kg/d) | A/m2 | Qm2/(kg/d) | |||
|---|---|---|---|---|---|---|
| R2= 0.9768 | R2= 0.9983 | R2= 0.9997 | ||||
| F值 | p值 | F值 | p值 | F值 | p值 | |
| 模型 | 32.81 | <0.0001 | 459.19 | <0.0001 | 2248.33 | <0.0001 |
| a | 0.03 | 0.87 | 3485.95 | <0.0001 | 18964.47 | <0.0001 |
| b | 43.04 | 0.0003 | 41.39 | 0.0004 | 2.99 | 0.13 |
| c | 191.62 | <0.0001 | 135.84 | <0.0001 | 6.97 | 0.03 |
| ab | 0.04 | 0.85 | 0.16 | 0.70 | 4.65 | 0.07 |
| ac | 0.0002 | 0.99 | 0.69 | 0.43 | 11.83 | 0.01 |
| bc | 20.08 | 0.0030 | 5.03 | 0.06 | 1.50 | 0.26 |
| a2 | 0.14 | 0.72 | 451.12 | <0.0001 | 1230.85 | <0.0001 |
| b2 | 6.73 | 0.04 | 0.25 | 0.63 | 0.32 | 0.59 |
| c2 | 31.41 | 0.0008 | 3.70 | 0.10 | 0.19 | 0.67 |
| 差异性 | 0.3800 | 0.7800 | 70.9800 | 0.0006 | 34.6600 | 0.0030 |
| 参数 | 数值 |
|---|---|
| 种群大小 | 100 |
| 代数 | 200 |
| 停滞代数限制 | 200 |
| 函数容忍度 | 10-100 |
| 交叉比例 | 0.9 |
| 迁移比例 | 0.03 |
Table 6 The parameter configuration for gamultiobj
| 参数 | 数值 |
|---|---|
| 种群大小 | 100 |
| 代数 | 200 |
| 停滞代数限制 | 200 |
| 函数容忍度 | 10-100 |
| 交叉比例 | 0.9 |
| 迁移比例 | 0.03 |
| 方案序号 | Qm1/(kg/d) | A/m2 | Qm2/(kg/d) | 平均误差/% | |||
|---|---|---|---|---|---|---|---|
| 预测值 | 实际值 | 预测值 | 实际值 | 预测值 | 实际值 | ||
| 1 | 17488.6 | 17493.7 | 200.9 | 194.3 | 12828.2 | 12939.7 | 1.43 |
| 2 | 17507.1 | 17506.8 | 238.2 | 236.2 | 12452.2 | 12436.3 | 0.33 |
| 3 | 17505.7 | 17493.2 | 202.5 | 207.5 | 12941.6 | 12751.3 | 1.32 |
| 4 | 17485.5 | 17483.6 | 218.9 | 219.6 | 12271.2 | 12282.8 | 0.14 |
| 5 | 17494.4 | 17500.2 | 150.2 | 152.8 | 13088.3 | 13091.7 | 0.59 |
Table 7 Random group average error analysis
| 方案序号 | Qm1/(kg/d) | A/m2 | Qm2/(kg/d) | 平均误差/% | |||
|---|---|---|---|---|---|---|---|
| 预测值 | 实际值 | 预测值 | 实际值 | 预测值 | 实际值 | ||
| 1 | 17488.6 | 17493.7 | 200.9 | 194.3 | 12828.2 | 12939.7 | 1.43 |
| 2 | 17507.1 | 17506.8 | 238.2 | 236.2 | 12452.2 | 12436.3 | 0.33 |
| 3 | 17505.7 | 17493.2 | 202.5 | 207.5 | 12941.6 | 12751.3 | 1.32 |
| 4 | 17485.5 | 17483.6 | 218.9 | 219.6 | 12271.2 | 12282.8 | 0.14 |
| 5 | 17494.4 | 17500.2 | 150.2 | 152.8 | 13088.3 | 13091.7 | 0.59 |
| 项目 | 节约效益/(×104 CNY/a) | 新增成本/(×104 CNY) | 静态投资回收期/a | ||||
|---|---|---|---|---|---|---|---|
| 电费 | 热泵压缩机 | 流股换热器 | 设备安装费 | 合计 | |||
| 数值 | 54.6 | 86.7 | 22.3 | 32.9 | 14.3 | 156.2 | 3 |
Table 8 Economic benefit analysis
| 项目 | 节约效益/(×104 CNY/a) | 新增成本/(×104 CNY) | 静态投资回收期/a | ||||
|---|---|---|---|---|---|---|---|
| 电费 | 热泵压缩机 | 流股换热器 | 设备安装费 | 合计 | |||
| 数值 | 54.6 | 86.7 | 22.3 | 32.9 | 14.3 | 156.2 | 3 |
| [1] | Zheng W, Yang W L, Chen J F, et al. H2S induced in situ formation of recyclable metal sulfide-based sorbent for elemental mercury sequestration in natural gas[J]. Chemical Engineering Journal, 2024, 497: 154699. |
| [2] | Silva A M A, Britto de Faria A C, de Lima Ribeiro C, et al. Review of zeolite membranes for natural gas processing and treatment: state of the art and future perspectives[J]. Gas Science and Engineering, 2023, 117: 205056. |
| [3] | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
| [4] | Abdallah L, El-Shennawy T. Reducing carbon dioxide emissions from electricity sector using smart electric grid applications[J]. Journal of Engineering, 2013, 2013(1): 845051. |
| [5] | Bayoumy S H, El-Marsafy S M, Ahmed T S. Optimization of a saturated gas plant: meticulous simulation-based optimization—A case study[J]. Journal of Advanced Research, 2020, 22: 21-33. |
| [6] | Adib H, Kazerooni N, Falsafi A, et al. Prediction of sulfur content in propane and butane after gas purification on a treatment unit[J]. Oil & Gas Science and Technology, 2018, 73: 70. |
| [7] | Chew Y E, Putra Z A, Foo D C Y. Process simulation and optimisation for acid gas removal system in natural gas processing[J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104764. |
| [8] | Cui X P, Lv W D, Ye H T, et al. Development of a selective sequential process for H2S enrichment and CO2 capture in aqueous MDEA solutions[J]. Journal of Cleaner Production, 2024, 478: 143858. |
| [9] | Moioli S, Giuffrida A, Romano M C, et al. Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants[J]. Applied Energy, 2016, 183: 1452-1470. |
| [10] | Moioli S, Pellegrini L A, Romano M C, et al. Pre-combustion CO2 removal in IGCC plant by MDEA scrubbing: modifications to the process flowsheet for energy saving[J]. Energy Procedia, 2017, 114: 2136-2145. |
| [11] | Dara S, AlHammadi A A, Berrouk A S, et al. Carbon footprint reduction of acid gas enrichment units in hot climates: a techno-economic simulation study[J]. Journal of Cleaner Production, 2018, 201: 974-987. |
| [12] | Dai Y Y, Peng Y W, Qiu Y, et al. Techno-economic analysis of a novel two-stage flashing process for acid gas removal from natural gas[J]. Energies, 2019, 12(21): 4213. |
| [13] | Al-Amri A, Zahid U. Design modification of acid gas cleaning units for an enhanced performance in natural gas processing[J]. Energy & Fuels, 2020, 34(2): 2545-2552. |
| [14] | Liu G H, Zhu L, Cao W H, et al. New technique integrating hydrate-based gas separation and chemical absorption for the sweetening of natural gas with high H2S and CO2 contents[J]. ACS Omega, 2021, 6(40): 26180-26190. |
| [15] | Tang W T, Chien C K, Ward J D. A review of energy intensification strategies for distillation processes: cyclic operation, stacking, heat pumps, side-streams, dividing walls and beyond[J]. Separation and Purification Technology, 2025, 357: 130030. |
| [16] | Felbab N, Patel B, El-Halwagi M M, et al. Vapor recompression for efficient distillation(1): A new synthesis perspective on standard configurations[J]. AIChE Journal, 2013, 59(8): 2977-2992. |
| [17] | Kishimoto A, Kansha Y, Fushimi C, et al. Exergy recuperative CO2 gas separation in post-combustion capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 10128-10135. |
| [18] | Zhang K F, Liu Z L, Wang Y Y, et al. Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant[J]. Energy, 2014, 66: 556-568. |
| [19] | Waheed M A, Oni A O, Adejuyigbe S B, et al. Performance enhancement of vapor recompression heat pump[J]. Applied Energy, 2014, 114: 69-79. |
| [20] | Shakerian F, Kim K H, Szulejko J E, et al. A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture[J]. Applied Energy, 2015, 148: 10-22. |
| [21] | Oh S Y, Binns M, Cho H, et al. Energy minimization of MEA-based CO2 capture process[J]. Applied Energy, 2016, 169: 353-362. |
| [22] | Song C F, Liu Q L, Ji N, et al. Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization[J]. Energy, 2017, 124: 29-39. |
| [23] | Jang G G, Jung G S, Aye Meyer P, et al. Effective direct steam regeneration of bis-iminoguanidine solid sorbent used for carbon dioxide capture[J]. Chemical Engineering Journal, 2024, 495: 153469. |
| [24] | Mantingh J, Kiss A A. Enhanced process for energy efficient extraction of 1,3-butadiene from a crude C4 cut[J]. Separation and Purification Technology, 2021, 267: 118656. |
| [25] | Christopher C C E, Dutta A, Farooq S, et al. Process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recuperation[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14557-14564. |
| [26] | Sajid M, Nazal M K, Ihsanullah, et al. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review[J]. Separation and Purification Technology, 2018, 191: 400-423. |
| [27] | Witek-Krowiak A, Chojnacka K, Podstawczyk D, et al. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process[J]. Bioresource Technology, 2014, 160: 150-160. |
| [28] | Bowden G D, Pichler B J, Maurer A. A design of experiments (DoE) approach accelerates the optimization of copper-mediated 18F-fluorination reactions of arylstannanes[J]. Scientific Reports, 2019, 9: 11370. |
| [29] | Lu H N, Dong Q, Yan S, et al. Development of flexible grouting material for cement-stabilized macadam base using response surface and genetic algorithm optimization methodologies[J]. Construction and Building Materials, 2023, 409: 133823. |
| [30] | Ferreira S L C, Bruns R E, Ferreira H S, et al. Box-Behnken design: an alternative for the optimization of analytical methods[J]. Analytica Chimica Acta, 2007, 597(2): 179-186. |
| [31] | Emmerich M, Giotis A, Özdemir M, et al. Metamodel: assisted evolution strategies[M]//Parallel Problem Solving from Nature— PPSN Ⅶ. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 361-370. |
| [32] | Hao Y Y, Zhao C L, Zhang Y Q, et al. Constrained multi-objective optimization problems: methodologies, algorithms and applications[J]. Knowledge-Based Systems, 2024, 299: 111998. |
| [33] | Wang T, Feng J C. Multi-objective joint optimization for concurrent execution of design-construction tasks in design-build mode[J]. Automation in Construction, 2023, 156: 105078. |
| [34] | Zhai C H, Wang J J, Tu Y L, et al. Robust optimization of 3D printing process parameters considering process stability and production efficiency[J]. Additive Manufacturing, 2023, 71: 103588. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [3] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [4] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [5] | Congqi HUANG, Shuangquan SHAO. Research on characteristics of compression-absorption refrigeration system driven by waste heat in liquid-cooled data center [J]. CIESC Journal, 2025, 76(S1): 326-335. |
| [6] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [7] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [8] | Zhihong JIANG, Qian LEI, Yinjun ZHU, Zhigang LEI, Honglin CHEN. Study on physical property model and enrichment process of trioxane system [J]. CIESC Journal, 2025, 76(9): 4872-4881. |
| [9] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [10] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [11] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [12] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| [13] | Yilei ZHOU, Zhi LI, Xin PENG. Design of self-optimizing control structure for continuous catalytic reforming reaction process based on surrogate model [J]. CIESC Journal, 2025, 76(9): 4499-4511. |
| [14] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [15] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||