CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4551-4562.DOI: 10.11949/0438-1157.20250313
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Xianghai LI1, Delin LAI2, Gang KONG2, Jian ZHOU1(
)
Received:2025-03-27
Revised:2025-05-01
Online:2025-10-23
Published:2025-09-25
Contact:
Jian ZHOU
通讯作者:
周健
作者简介:李相海(2000—),男,硕士研究生,1282912734 @qq.com
基金资助:CLC Number:
Xianghai LI, Delin LAI, Gang KONG, Jian ZHOU. Molecular dynamics simulations on synergistic underwater oleophobicity mechanism of dual-biomimic surfaces[J]. CIESC Journal, 2025, 76(9): 4551-4562.
李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562.
Add to citation manager EndNote|Ris|BibTeX
| 体系 | 水分子配位数 | 停留时间τ/ps | 氢键总数 | 平均氢键数 |
|---|---|---|---|---|
| DOPA-SBMA | 7.19 | 56.9±3.4 | 155 | 1.6 |
| DOPA-TMAO | 10.14 | 69.7±4.8 | 305 | 3.2 |
Table 1 Residence time of water molecules and hydrogen bond counts in different systems under pure aqueous environment
| 体系 | 水分子配位数 | 停留时间τ/ps | 氢键总数 | 平均氢键数 |
|---|---|---|---|---|
| DOPA-SBMA | 7.19 | 56.9±3.4 | 155 | 1.6 |
| DOPA-TMAO | 10.14 | 69.7±4.8 | 305 | 3.2 |
| [1] | 国家统计局. 废水中主要污染物排放年度数据[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C04&sj=2024, 2024. |
| National Bureau of Statistics. Annual data on the discharge of major pollutants in wastewater[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C04&sj=2024, 2024. | |
| [2] | 国家统计局. 工业污染治理投资年度数据[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C0I&sj=2024, 2024. |
| National Bureau of Statistics. Annual investment data for industrial pollution control[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C0I&sj=2024, 2024. | |
| [3] | Xie S R, Jiang W, Feng C M, et al. Coral skeletons reveal the impacts of oil pollution on seawater chemistry in the northern South China Sea[J]. Chemosphere, 2023, 338: 139632. |
| [4] | Dai X M, Sun N, Nielsen S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J]. Science Advances, 2018, 4(3): eaaq0919. |
| [5] | Liu D P, Zhu J, Qiu M, et al. Antifouling performance of poly(lysine methacrylamide)-grafted PVDF microfiltration membrane for solute separation[J]. Separation and Purification Technology, 2016, 171: 1-10. |
| [6] | Yang Y L, Li M M, Zhu L J, et al. Zwitterionic polyvinylidene fluoride membranes with strong underwater superoleophobicity and oil-fouling resistance for oily water purification[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107593. |
| [7] | Manabe K, Saikawa M, Sato I, et al. Biomimetic 3D-printed armored structures for durable superhydrophobic surfaces: integrating macroprotection and nanofunctionality[J]. ACS Applied Polymer Materials, 2024, 6(22): 13701-13709. |
| [8] | Meng F, Liu J L, Arai N. Investigating the nanostructure design mechanism behind the hydrophobicity of the biomimetic surface[J]. ACS Applied Materials & Interfaces, 2025, 17(15): 23394-23404. |
| [9] | Sundaram H S, Han X, Nowinski A K, et al. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6664-6671. |
| [10] | Zhang Y, Yang J L, Zhao Y L, et al. Anti-fouling ternary zwitterionic coating membrane with strong surface hydration and salt resistant for efficient long-term emulsion separation in high salinity marine environment[J]. Journal of Membrane Science, 2024, 710: 123167. |
| [11] | Miao Z H, Zhou J. Multiscale modeling and simulation of zwitterionic anti-fouling materials[J]. Langmuir, 2025, 41(12): 7980-7995. |
| [12] | Liu H Y, Yang L, Dou B J, et al. Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation[J]. Separation and Purification Technology, 2021, 279: 119789. |
| [13] | Cheng G, Liao M R, Zhao D H, et al. Molecular understanding on the underwater oleophobicity of self-assembled monolayers: zwitterionic versus nonionic[J]. Langmuir, 2017, 33(7): 1732-1741. |
| [14] | Liao M R, Cheng G, Zhou J. Underwater superoleophobicity of pseudozwitterionic SAMs: effects of chain length and ionic strength[J]. The Journal of Physical Chemistry C, 2017, 121(32): 17390-17401. |
| [15] | Chen Z, Liao M R, Zhang L Z, et al. Molecular simulations on the hydration and underwater oleophobicity of zwitterionic self-assembled monolayers[J]. AIChE Journal, 2021, 67(2): e17103. |
| [16] | Niu J Q, Wang H H, Chen J, et al. Bio-inspired zwitterionic copolymers for antifouling surface and oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127016. |
| [17] | Song X Z, Man J, Zhang X K, et al. Atomistic insights into the ionic response and mechanism of antifouling zwitterionic polymer brushes[J]. Small, 2025, 21(6): 2570043. |
| [18] | Ohto T, Backus E H G, Mizukami W, et al. Unveiling the amphiphilic nature of TMAO by vibrational sum frequency generation spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(31): 17435-17443. |
| [19] | Bruce E E, van der Vegt N F A. Molecular scale solvation in complex solutions[J]. Journal of the American Chemical Society, 2019, 141(33): 12948-12956. |
| [20] | Ganguly P, Boserman P, van der Vegt N F A, et al. Trimethylamine N-oxide counteracts urea denaturation by inhibiting protein-urea preferential interaction[J]. Journal of the American Chemical Society, 2018, 140(1): 483-492. |
| [21] | Li B W, Jain P, Ma J R, et al. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials[J]. Science Advances, 2019, 5(6): eaaw9562. |
| [22] | Huang H, Zhang C C, Crisci R, et al. Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO[J]. Journal of the American Chemical Society, 2021, 143(40): 16786-16795. |
| [23] | Yang J, Lin L G, Tang F L, et al. Superwetting membrane by co-deposition technique using a novel N-oxide zwitterionic polymer assisted by bioinspired dopamine for efficient oil-water separation[J]. Separation and Purification Technology, 2023, 318: 123965. |
| [24] | Jiang Y Z, Liu C Y, Li Y H, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019, 587: 117177. |
| [25] | Noguchi A, Masuda T, Chen C Q, et al. Hydrophilic surfaces from simple dip-coating method: amphiphilic block copolymers with zwitterionic group form antifouling coatings under atmospheric conditions[J]. Materials Advances, 2020, 1(8): 2737-2744. |
| [26] | Zhai Y D, Chen X Q, Yuan Z B, et al. A mussel-inspired catecholic ABA triblock copolymer exhibits better antifouling properties compared to a diblock copolymer[J]. Polymer Chemistry, 2020, 11(28): 4622-4629. |
| [27] | Han X T, Gong X. In situ, one-pot method to prepare robust superamphiphobic cotton fabrics for high buoyancy and good antifouling[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 31298-31309. |
| [28] | Krüger J M, Börner P H G. Accessing the next generation of synthetic mussel-glue polymers via mussel-inspired polymerization[J]. Angewandte Chemie International Edition, 2021, 60(12): 6408-6413. |
| [29] | Tao C, Jin M, Yao H, et al. Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity[J]. Nanoscale, 2021, 13(43): 18148-18159. |
| [30] | Zhang C, Zhou Y S, Han H J, et al. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors[J]. ACS Nano, 2021, 15(1): 1785-1794. |
| [31] | Asha A B, Chen Y J, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering[J]. Chemical Society Reviews, 2021, 50(20): 11668-11683. |
| [32] | Liu X X, Jia K L, Ning J H, et al. A dual-biomimetic N-oxide-based zwitterionic coating for constructing antifouling membrane with exceptional emulsion separation performance[J]. Surface and Coatings Technology, 2025, 497: 131738. |
| [33] | Zhou Z, Shi Q H. Bioinspired dopamine and N-oxide-based zwitterionic polymer brushes for fouling resistance surfaces[J]. Polymers, 2024, 16(12): 1634. |
| [34] | Wang Y C, Li Y, Zhang Q L, et al. Bio-inspired co-deposition of dopamine and N-oxide zwitterionic polyethyleneimine to fabricate anti-fouling loose nanofiltration membranes for dye desalination[J]. Separation and Purification Technology, 2024, 349: 127801. |
| [35] | Li Y T, Liao M R, Zhou J. Catechol and its derivatives adhesion on graphene: insights from molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2018, 122(40): 22965-22974. |
| [36] | 徐威, 兰忠, 彭本利, 等. 微液滴在不同能量表面上润湿状态的分子动力学模拟[J]. 物理学报, 2015, 64(21): 374-381. |
| Xu W, Lan Z, Peng B L, et al. Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies[J]. Acta Physica Sinica, 2015, 64(21): 374-381. | |
| [37] | Wang Y X, Kiziltas A, Blanchard P, et al. Contact angle calculator: an automated, parametrized, and flexible code for contact angle estimation in visual molecular dynamics[J]. Journal of Chemical Information and Modeling, 2022, 62(24): 6302-6308. |
| [38] | Jiménez-Ángeles F, Firoozabadi A. Contact angle, liquid film, and liquid-liquid and liquid-solid interfaces in model oil-brine-substrate systems[J]. The Journal of Physical Chemistry C, 2016, 120(22): 11910-11917. |
| [39] | Steylaerts T, Vos R, James Shirley F, et al. Use of a piezo-electric microarrayer for site-specific, high throughput contact angle measurements[J]. Surfaces and Interfaces, 2019, 17: 100389. |
| [40] | Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. |
| [41] | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| [42] | Vanommeslaeghe K, Raman E P, Mackerell A D. Automation of the CHARMM General Force Field (CGenFF) Ⅱ: assignment of bonded parameters and partial atomic charges[J]. Journal of Chemical Information & Modeling, 2012, 52(12): 3155-3168. |
| [43] | Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. |
| [44] | Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. |
| [45] | Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review. A, General Physics, 1985, 31(3): 1695-1697. |
| [46] | Hess B, Bekker H, Berendsen H J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472. |
| [47] | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
| [48] | Yeh I C, Berkowitz M L. Ewald summation for systems with slab geometry[J]. Journal of Chemical Physics, 1999, 111(7): 3155-3162. |
| [49] | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
| [50] | Jiang H, Patel A J. Recent advances in estimating contact angles using molecular simulations and enhanced sampling methods[J]. Current Opinion in Chemical Engineering, 2019, 23: 130-137. |
| [51] | 郑直, 郭乃胜, 尤占平, 等. 废木油与石油沥青相容机制的分子动力学研究[J]. 化工学报, 2023, 74(10): 4037-4050. |
| Zheng Z, Guo N S, You Z P, et al. Research on compatibility mechanisms between waste wood oil and petroleum asphalt through molecular dynamics[J]. CIESC Journal, 2023, 74(10): 4037-4050. | |
| [52] | Tsuchida E. Revisiting the minimum image locus method for calculating the radial distribution functions[J]. Computational and Theoretical Chemistry, 2023, 1227: 114256. |
| [53] | Hower J C, He Y, Bernards M T, et al. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers[J]. The Journal of Chemical Physics, 2006, 125(21): 214704. |
| [54] | Zeng S, Su Q W, Zhang L Z. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119508. |
| [55] | Qi L B, Jiang T J, Liang R N, et al. Enhancing the oil-fouling resistance of polymeric membrane ion-selective electrodes by surface modification of a zwitterionic polymer-based oleophobic self-cleaning coating[J]. Analytical Chemistry, 2021, 93(18): 6932-6937. |
| [56] | Meena S K, Goldmann C, Nassoko D, et al. Nanophase segregation of self-assembled monolayers on gold nanoparticles[J]. ACS Nano, 2017, 11(7): 7371-7381. |
| [57] | Liu Y L, Zhang D, Ren B P, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes[J]. Journal of Materials Chemistry. B, 2020, 8(17): 3814-3828. |
| [58] | Betancourt-Ponce M, Morales-Guzmán C, Cruz-Tato P, et al. Probing the effect of amine N-oxide zwitterionic polymer additives in polysulfone forward osmosis membranes[J]. ACS Applied Polymer Materials, 2022, 4(11): 7966-7975. |
| [59] | Jung K H, Kim H J, Kim M H, et al. Ultrafiltration membranes coated by amphiphilic copolymers containing superhydrophilic zwitterionic and hydrophobic POSS moieties showing improved fouling resistance/release properties[J]. Macromolecular Materials and Engineering, 2020, 305(9): 2000348. |
| [60] | Cheng Y, Wang J L, Li M L, et al. Zwitterionic polymer-grafted superhydrophilic and superoleophobic silk fabrics for anti-oil applications[J]. Macromolecular Rapid Communications, 2020, 41(21): 2000162. |
| [61] | Carro P, Andreasen G, Vericat C, et al. New aspects of the surface chemistry of sulfur on Au(111): surface structures formed by gold-sulfur complexes[J]. Applied Surface Science, 2019, 487: 848-856. |
| [62] | Liao M R, Li Y T, Chen Z, et al. Computer simulations of underwater oil adhesion of self-assembled monolayers on Au(111)[J]. Molecular Simulation, 2020, 46(9): 713-720. |
| [63] | Li Y T, Liao M R, Zhou J. Catechol-cation adhesion on silica surfaces: molecular dynamics simulations[J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29222-29231. |
| [64] | 李映图, 李理波, 周健. 分子动力学模拟多巴在自组装膜上的黏附性[J]. 高等学校化学学报, 2017, 38(5): 798-805. |
| Li Y T, Li L B, Zhou J. Molecular dynamics simulations on the adhesion of DOPA to self-assembled monolayers[J]. Chemical Journal of Chinese Universities, 2017, 38(5): 798-805. |
| [1] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [2] | Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt [J]. CIESC Journal, 2025, 76(8): 3834-3841. |
| [3] | Xiaoling WANG, Shaoqing WANG, Yungang ZHAO, Fangzhe CHANG, Ruifeng MU. Mechanism of organic Ca transformation during coal hydropyrolysis: insights from ReaxFF molecular dynamics simulations [J]. CIESC Journal, 2025, 76(8): 4297-4309. |
| [4] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [5] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [6] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [7] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [8] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [9] | Jianbing CHEN, Hao CHANG, Ming GAO, Bing XING, Lei ZHANG, Qilei LIU. Phase separation prediction methodology for amine-based phase change absorbents based on reaction templates and molecular dynamics [J]. CIESC Journal, 2025, 76(5): 2387-2396. |
| [10] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [11] | Feng ZHU, Yue ZHAO, Fengxiang MA, Wei LIU. Adsorption properties of modified UIO-66 for SF6/N2 gas mixture and its decomposition products [J]. CIESC Journal, 2025, 76(4): 1604-1616. |
| [12] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
| [13] | Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster [J]. CIESC Journal, 2025, 76(1): 363-373. |
| [14] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
| [15] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||