CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5300-5310.DOI: 10.11949/0438-1157.20250512

• Energy and environmental engineering • Previous Articles     Next Articles

Pore evolution and its influence on volatile mass transfer during long-flame coal pyrolysis

Yi CUI1(), Yaowei HU1,2, Yuncai SONG1,2,3(), Jie FENG1,2,3(), Wenying LI1,2,3   

  1. 1.State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi Research Institute of Huairou Laboratory, Taiyuan 030024, Shanxi, China
    3.Beijing Huairou Laboratory, Beijing 101499, China
  • Received:2025-05-09 Revised:2025-07-10 Online:2025-11-25 Published:2025-10-25
  • Contact: Yuncai SONG, Jie FENG

长焰煤热解过程中孔的演变及其对挥发分传质影响

崔诣1(), 胡耀伟1,2, 宋云彩1,2,3(), 冯杰1,2,3(), 李文英1,2,3   

  1. 1.太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
    2.怀柔实验室山西研究院,山西 太原 030024
    3.北京怀柔实验室,北京 101499
  • 通讯作者: 宋云彩,冯杰
  • 作者简介:崔诣(1999—),男,硕士研究生,cuiyi0980@link.tyut.edu.cn
  • 基金资助:
    国家重点研发计划战略性科技创新合作项目(2022YFE0208400);山西省重点研发计划项目(202202090301002);怀柔实验室项目(ZD2023012A);山西省自然科学基金项目(20210302124096)

Abstract:

Pore structure is one of the important factors affecting pyrolytic devolatiles. This study systematically investigates the evolution and fractal characteristics of semicoke pores at different pyrolysis final temperatures (393—1073 K) using integrated N2 adsorption and fractal dimension analysis. A particle-scale model was developed based on pore evolution patterns, incorporating tar secondary cracking, volatile diffusion in fractal pores, and predicting transient temperature distribution, volatile yields, and pore structure changes. The results show that slit-shaped mesopores dominate during semi-coke pyrolysis, with pore evolution driven by drying degassing, organic decomposition with pore shrinkage, and increased heterogeneity from micropores. Pore structure mainly influences volatile yields by modifying tar diffusion pathways, while showing negligible effects on light gas production. This work provides fundamental insights into pore-volatile interactions that are crucial for pyrolysis reactor design and process optimization.

Key words: low-rank coal pyrolysis, porous media, pore distribution, fractal dimension, diffusion, numerical simulation

摘要:

孔隙结构是影响热解脱挥发分的重要因素之一。为了研究煤热解过程中孔隙的演变规律和分形特征及其对挥发分传质行为的影响,本文通过N2吸附法和分形理论对不同热解终温(393~1073 K)下半焦的孔隙结构进行了分析和定量描述。并基于半焦孔隙的演变规律和分形特征,从颗粒尺度上对热解过程中孔结构的演变进行了建模,模型考虑了焦油的二次裂解反应、挥发分在分形孔隙内的扩散,同时能预测煤颗粒的瞬态温度分布、挥发分的生成以及孔隙结构的变化。结果表明,半焦热解过程中以狭缝状介孔为主;影响孔隙演变的机制包括干燥脱气、有机质裂解与孔隙收缩;微孔存在增加了半焦孔结构的非均质性。孔结构主要通过改变焦油的扩散机制来影响挥发分的产率,对轻质气体的产率影响不大。

关键词: 低阶煤热解, 多孔介质, 孔隙结构, 分形维数, 扩散, 数值模拟

CLC Number: