CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5300-5310.DOI: 10.11949/0438-1157.20250512
• Energy and environmental engineering • Previous Articles Next Articles
Yi CUI1(
), Yaowei HU1,2, Yuncai SONG1,2,3(
), Jie FENG1,2,3(
), Wenying LI1,2,3
Received:2025-05-09
Revised:2025-07-10
Online:2025-11-25
Published:2025-10-25
Contact:
Yuncai SONG, Jie FENG
崔诣1(
), 胡耀伟1,2, 宋云彩1,2,3(
), 冯杰1,2,3(
), 李文英1,2,3
通讯作者:
宋云彩,冯杰
作者简介:崔诣(1999—),男,硕士研究生,cuiyi0980@link.tyut.edu.cn
基金资助:CLC Number:
Yi CUI, Yaowei HU, Yuncai SONG, Jie FENG, Wenying LI. Pore evolution and its influence on volatile mass transfer during long-flame coal pyrolysis[J]. CIESC Journal, 2025, 76(10): 5300-5310.
崔诣, 胡耀伟, 宋云彩, 冯杰, 李文英. 长焰煤热解过程中孔的演变及其对挥发分传质影响[J]. 化工学报, 2025, 76(10): 5300-5310.
Add to citation manager EndNote|Ris|BibTeX
| 工业分析wad/% | 元素分析wdaf/% | |||||||
|---|---|---|---|---|---|---|---|---|
| M | A | V | FC | C | H | N | S | O |
| 2.80 | 7.80 | 35.38 | 54.02 | 81.62 | 5.64 | 1.05 | 0.82 | 9.81 |
Table 1 Proximate and ultimate analysis of CJT
| 工业分析wad/% | 元素分析wdaf/% | |||||||
|---|---|---|---|---|---|---|---|---|
| M | A | V | FC | C | H | N | S | O |
| 2.80 | 7.80 | 35.38 | 54.02 | 81.62 | 5.64 | 1.05 | 0.82 | 9.81 |
| 方程类别 | 方程 |
|---|---|
| 能量守恒方程[ | |
| 有效比热容(ρcp )eff | |
| 有效热导率λeff | |
| 热源项Qtot[ | |
| 局部热通量q[ | |
| 动量传递控制方程[ | |
| 气体流速u | |
| 多孔基体的渗透率κ[ | |
| 理想气体状态方程[ | |
| 质量传递方程[ | |
| 对流质量通量[ | |
| 扩散通量Ji[ | |
| 分形扩散系数Di[ | |
| 分子运动的平均速率v[ | |
| 分子平均自由程δ[ | |
| 孔隙结构演变模型[ | |
| Nusselt数[ | |
| Reynolds数[ | |
| Prandtl数[ | |
| 反应速率常数k[ |
Table 2 Mathematical modeling involved in the reaction process
| 方程类别 | 方程 |
|---|---|
| 能量守恒方程[ | |
| 有效比热容(ρcp )eff | |
| 有效热导率λeff | |
| 热源项Qtot[ | |
| 局部热通量q[ | |
| 动量传递控制方程[ | |
| 气体流速u | |
| 多孔基体的渗透率κ[ | |
| 理想气体状态方程[ | |
| 质量传递方程[ | |
| 对流质量通量[ | |
| 扩散通量Ji[ | |
| 分形扩散系数Di[ | |
| 分子运动的平均速率v[ | |
| 分子平均自由程δ[ | |
| 孔隙结构演变模型[ | |
| Nusselt数[ | |
| Reynolds数[ | |
| Prandtl数[ | |
| 反应速率常数k[ |
| 反应 | 指前因子Ai /s-1 | 活化能Ei /(kJ·mol-1) | 反应热ΔH/(kJ·kg-1) |
|---|---|---|---|
| 1 | 4.38×109 | 152.7 | 80 |
| 2 | 1.08×1010 | 148 | 80 |
| 3 | 3.75×106 | 111.7 | 80 |
| 4 | 4.28×106 | 108 | -42 |
| 5 | 1×105 | 108 | -42 |
| 6 | 1.38×1010 | 161 | -300 |
Table 3 Kinetic parameters and reaction heat of pyrolysis reactions[20]
| 反应 | 指前因子Ai /s-1 | 活化能Ei /(kJ·mol-1) | 反应热ΔH/(kJ·kg-1) |
|---|---|---|---|
| 1 | 4.38×109 | 152.7 | 80 |
| 2 | 1.08×1010 | 148 | 80 |
| 3 | 3.75×106 | 111.7 | 80 |
| 4 | 4.28×106 | 108 | -42 |
| 5 | 1×105 | 108 | -42 |
| 6 | 1.38×1010 | 161 | -300 |
| 物性参数 | 数值或表达式 |
|---|---|
| 比热容/(J·kg-1·K-1) | |
| 热导率/(W·m-1·K-1) | |
| 颗粒的初始密度/ (kg·m-3) | |
| 环境压力/Pa |
Table 4 Physical property parameters or relationships used in the model[33]
| 物性参数 | 数值或表达式 |
|---|---|
| 比热容/(J·kg-1·K-1) | |
| 热导率/(W·m-1·K-1) | |
| 颗粒的初始密度/ (kg·m-3) | |
| 环境压力/Pa |
| 挥发分组成 | 摩尔质量M/ (kg·mol-1) | 有效分子碰撞 直径dm/m | 黏度μ/(Pa·s) |
|---|---|---|---|
| tar | 0.325 | 10-9 | 6.6, T0,tar= 313 K |
| gas | 0.02 | 3.4×10-10 | 3.79×10-5, T0,gas=298 K |
Table 5 Physical parameters of volatiles components of coal pyrolysis[34]
| 挥发分组成 | 摩尔质量M/ (kg·mol-1) | 有效分子碰撞 直径dm/m | 黏度μ/(Pa·s) |
|---|---|---|---|
| tar | 0.325 | 10-9 | 6.6, T0,tar= 313 K |
| gas | 0.02 | 3.4×10-10 | 3.79×10-5, T0,gas=298 K |
| 热解温度/K | 微孔孔容/ (cm3·g-1) | 介孔孔容/ (cm3·g-1) | 大孔孔容/ (cm3·g-1) |
|---|---|---|---|
| 393 | 0.0018 | 0.0185 | 0.0109 |
| 473 | 0.0017 | 0.0217 | 0.0111 |
| 573 | 0.0017 | 0.0162 | 0.0094 |
| 673 | 0.0071 | 0.0240 | 0.014 |
| 773 | 0.0144 | 0.0321 | 0.0161 |
| 873 | 0.0400 | 0.0428 | 0.0183 |
| 973 | 0.0543 | 0.0407 | 0.0286 |
| 1073 | 0.0216 | 0.0346 | 0.0215 |
Table 6 Pore volume of semicoke at different pyrolysis temperature
| 热解温度/K | 微孔孔容/ (cm3·g-1) | 介孔孔容/ (cm3·g-1) | 大孔孔容/ (cm3·g-1) |
|---|---|---|---|
| 393 | 0.0018 | 0.0185 | 0.0109 |
| 473 | 0.0017 | 0.0217 | 0.0111 |
| 573 | 0.0017 | 0.0162 | 0.0094 |
| 673 | 0.0071 | 0.0240 | 0.014 |
| 773 | 0.0144 | 0.0321 | 0.0161 |
| 873 | 0.0400 | 0.0428 | 0.0183 |
| 973 | 0.0543 | 0.0407 | 0.0286 |
| 1073 | 0.0216 | 0.0346 | 0.0215 |
| [8] | Hu S, Li M, Xiang J, et al. Fractal characteristic of three Chinese coals[J]. Fuel, 2004, 83(10): 1307-1313. |
| [9] | Lu G W, Wang J L, Wei C T, et al. Pore fractal model applicability and fractal characteristics of seepage and adsorption pores in middle rank tectonic deformed coals from the Huaibei coal field[J]. Journal of Petroleum Science and Engineering, 2018, 171: 808-817. |
| [10] | Liu X F, Nie B S. Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J]. Fuel, 2016, 182: 314-322. |
| [11] | Wang F, Cheng Y P, Lu S Q, et al. Influence of coalification on the pore characteristics of middle-high rank coal[J]. Energy & Fuels, 2014, 28(9): 5729-5736. |
| [12] | Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42. |
| [13] | Shi J Q, Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection[J]. Fuel, 2003, 82(10): 1219-1229. |
| [14] | Simons G A. Coal pyrolysis ( Ⅰ ) : Pore evolution theory[J]. Combustion and Flame, 1983, 53(1/2/3): 83-92. |
| [15] | Li S F, Yang H, Fletcher T H, et al. Model for the evolution of pore structure in a lignite particle during pyrolysis[J]. Energy & Fuels, 2015, 29(8): 5322-5333. |
| [16] | Guo F H, Zhao X, Guo Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148. |
| [17] | Tang J W, Feng L, Li Y J, et al. Fractal and pore structure analysis of Shengli lignite during drying process[J]. Powder Technology, 2016, 303: 251-259. |
| [18] | Shi X G, Gao J S, Lan X Y. Modeling the pyrolysis of a centimeter-sized biomass particle[J]. Chemical Engineering & Technology, 2019, 42(12): 2574-2579. |
| [19] | Di Blasi C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation[J]. Chemical Engineering Science, 1996, 51(7): 1121-1132. |
| [1] | Wang Z D, Jiang P F, Yang F, et al. Study on pore structure and fractal characteristics of tar-rich coal during pyrolysis by mercury intrusion porosimetry (MIP)[J]. Geofluids, 2022, 2022: 2067228. |
| [2] | Chen Y L, Ma L, He R. Development of improved lattice fragmentation and diffusion model for coal pyrolysis(part 1): Steady-state intra-porous gas diffusivity[J]. Combustion Science and Technology, 2014, 186(6): 747-765. |
| [3] | Solomon P R, Serio M A, Despande G V, et al. Cross-linking reactions during coal conversion[J]. Energy & Fuels, 1990, 4(1): 42-54. |
| [4] | Ma L Y, Zhang L, Wang D M, et al. Pore structure evolution during lean-oxygen combustion of pyrolyzed residual from low-rank coal and its effect on internal oxygen diffusion mechanism[J]. Fuel, 2022, 319: 123850. |
| [5] | Sun L N, Tuo J C, Zhang M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158: 549-557. |
| [6] | Xu P, Chen Z Y, Qiu S X, et al. An analytical model for pore and tortuosity fractal dimensions of porous media[J]. Fractals, 2021, 29(6): 2150156-20. |
| [7] | Li H J, Chang Q H, Gao R, et al. Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction[J]. Applied Energy, 2018, 225: 559-569. |
| [20] | Park W C, Atreya A, Baum H R. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis[J]. Combustion and Flame, 2010, 157(3): 481-494. |
| [21] | Li S N, Cao B Y. Vortex characteristics in Fourier and non-Fourier heat conduction based on heat flux rotation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2403-2407. |
| [22] | Atangana A. Fractional variable order derivatives//Fractional Operators with Constant and Variable Order with Application to Geo-hydrology[M]. Pittsburgh: Academic Press, 2018: 221-243. |
| [23] | Dallavalle J M. Book reviews: flow of gases through porous media[J]. Science, 1956, 124(3234): 1254-1255. |
| [24] | Grønli M G, Melaaen M C. Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions[J]. Energy & Fuels, 2000, 14(4): 791-800. |
| [25] | 曾子粤, 杨建森, 魏永起. 脱硫石膏灌芯墙脱水过程的仿真模拟与分析[J]. 材料导报, 2022, 36(5): 89-94. |
| Zeng Z Y, Yang J S, Wei Y Q. The simulation and analysis of dehydration process of FGD gypsum grouted wall[J]. Materials Reports, 2022, 36(5): 89-94. | |
| [26] | Flores R M. Coal and Coalbed Gas: Fueling the Future[M]. Amsterdam, Netherlands: Elsevier Science, 2013. |
| [27] | 马亮, 何榕. 分形多孔介质中气体稳态扩散[J]. 清华大学学报(自然科学版), 2013, 53(10): 1459-1463. |
| Ma L, He R. Steady-state gas diffusion in fractal porous media[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(10): 1459-1463. | |
| [28] | Zhang L Z. A fractal model for gas permeation through porous membranes[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5288-5295. |
| [29] | Gómez M A, Porteiro J, Chapela S, et al. An Eulerian model for the simulation of the thermal conversion of a single large biomass particle[J]. Fuel, 2018, 220: 671-681. |
| [30] | Adesanya B A, Pham H N. Mathematical modelling of devolatilization of large coal particles in a convective environment[J]. Fuel, 1995, 74(6): 896-902. |
| [31] | Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3): 325-336. |
| [32] | 李方舟, 李文英, 冯杰. 固体热载体法褐煤热解过程中的传质传热特性[J]. 化工学报, 2016, 67(4): 1136-1144. |
| Li F Z, Li W Y, Feng J. Characteristics of mass and heat transfer in lignite pyrolysis with solid heat carrier[J]. CIESC Journal, 2016, 67(4): 1136-1144. | |
| [33] | Li F Z, Feng J, Li X H, et al. A model of devolatilization behavior in lignite pyrolysis with solid heat carriers[J]. AIChE Journal, 2019, 65(6): e16590. |
| [34] | Bliek A, Van Poelje W M, Van Swaaij W P M, et al. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle[J]. AIChE Journal, 1985, 31(10): 1666-1681. |
| [35] | Wang J, Ku X K, Liu Z W. Three-dimensional simulation of the pyrolysis of a thermally thick biomass particle[J]. Energy & Fuels, 2023, 37(6): 4413-4428. |
| [36] | Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
| [37] | Gregg S J, Sing K S W, Salzberg H W. Adsorption surface area and porosity[J]. Journal of the Electrochemical Society, 1967, 114(11): 279C. |
| [38] | Jia L, Fan B G, Li B, et al. Effects of pyrolysis mode and particle size on the microscopic characteristics and mercury adsorption characteristics of biomass char[J]. BioResources, 2018, 13(3): 5450-5471. |
| [39] | Zhang F C, Tavakkol S, Galeazzo F C C, et al. Particle-resolved simulation of the pyrolysis process of a single plastic particle[J]. Heat and Mass Transfer, 2024, 61(1): 12. |
| [40] | Mou P W, Pan J N, Niu Q H, et al. Coal pores: methods, types, and characteristics[J]. Energy & Fuels, 2021, 35(9): 7467-7484. |
| [41] | 柏静儒, 林卫生, 潘朔, 等. 油页岩低温热解过程中轻质气体的析出特性[J]. 化工学报, 2015, 66(3): 1104-1110. |
| Bai J R, Lin W S, Pan S, et al. Characteristics of light gases evolution during oil shale pyrolysis[J]. CIESC Journal, 2015, 66(3): 1104-1110. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [6] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [7] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [8] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [9] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [10] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [11] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [12] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [13] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [14] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [15] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||