Qiyuan ZHENG(
), Fei SHI(
), Xiaowang REN, Weifan WANG, Yi YANG, Ye YUAN(
), Zhi WANG(
)
Received:2025-09-08
Revised:2025-10-22
Published:2025-10-23
Contact:
Ye YUAN, Zhi WANG
郑淇元(
), 时飞(
), 任肖旺, 王卫凡, 杨毅, 原野(
), 王志(
)
通讯作者:
原野,王志
作者简介:郑淇元(2002—),男,硕士研究生,2024207070@tju.edu.cn基金资助:CLC Number:
Qiyuan ZHENG, Fei SHI, Xiaowang REN, Weifan WANG, Yi YANG, Ye YUAN, Zhi WANG. Preparation process development of UiO-66-NH2@PVAm mixed matrix membranes for CO2 capture[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251009.
郑淇元, 时飞, 任肖旺, 王卫凡, 杨毅, 原野, 王志. 用于CO2捕集的UiO-66-NH2@PVAm混合基质膜制备工艺开发[J]. 化工学报, DOI: 10.11949/0438-1157.20251009.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Adsorption-desorption isotherms of nano-fillers at 77K: (a) UiO-66-NH2; (c) UiO-66-NH2@PVAm and pore size distribution map: (b) UiO-66-NH2; (d) UiO-66-NH2@PVAm
| 样品 | BET比表面积/ (m2·g-1) | 总孔体积/ (cm3·g-1) | 平均微孔孔径/ (nm) |
|---|---|---|---|
| UiO-66-NH2 | 973.35 | 0.61 | 0.68 |
| UiO-66-NH2@PVAm | 631.71 | 0.55 | 0.62 |
Table 1 The pore parameters of UiO-66-NH2 and UiO-66-NH2@PVAm
| 样品 | BET比表面积/ (m2·g-1) | 总孔体积/ (cm3·g-1) | 平均微孔孔径/ (nm) |
|---|---|---|---|
| UiO-66-NH2 | 973.35 | 0.61 | 0.68 |
| UiO-66-NH2@PVAm | 631.71 | 0.55 | 0.62 |
| 填料类型 | 流体力学粒径/(nm) | Zeta电位/(mV) | 粘度/(mPa·s) | 接触角/(°) |
|---|---|---|---|---|
| UiO-66-NH2 | 441.20 | 20.70 | 73.06 | 64.06 |
| UiO-66-NH2@PVAm | 376.60 | 42.50 | 83.41 | 59.69 |
Table 2 The physical parameters of the dispersion and coating solution prepared by UiO-66-NH2 and UiO-66-NH2@PVAm
| 填料类型 | 流体力学粒径/(nm) | Zeta电位/(mV) | 粘度/(mPa·s) | 接触角/(°) |
|---|---|---|---|---|
| UiO-66-NH2 | 441.20 | 20.70 | 73.06 | 64.06 |
| UiO-66-NH2@PVAm | 376.60 | 42.50 | 83.41 | 59.69 |
Fig.7 (a) The effects of slit gap distance on the supply volume of the slot-die coating device and (b) the CO2/N2 separation performance of PVAm TFC membranes (feed gas: CO2:N2=15:85, humidified, 0.5 MPa, 25°C)
Fig.9 The surface SEM images of MMMs prepared with different UiO-66-NH2@PVAm loading: (a) 0 wt%, (b) 5 wt%, (c) 10 wt%, (d) 20 wt% and (e) 30 wt%; (f) the high-resolution SEM image of MMMs with 30 wt% UiO-66-NH2@PVAm loading
Fig.10 (a) The CO2/N2 separation performance and (b) the N2 permeance of MMMs prepared by slot-die coating process (feed gas: CO2:N2=15:85, humidified, 0.5 MPa, 25℃)
Fig.11 (a) The effects of feed gas pressure on the CO2/N2 separation performance of PVAm/UiO-66-NH2@PVAm(20) membrane (hollow symbol) and PVAm membrane (solid symbol) (feed gas: CO2:N2=15:85, humidified, 25°C); (b) Long-term performance stability of PVAm/UiO-66-NH2@PVAm(20) membrane (feed gas A: CO2:N2=15:85, feed gas B: 10 ppm SO2+30 ppm NO2+15 ppm CO+15% CO2+N2 balance, humidified, 0.5 MPa, 25℃)
| 膜 | 原料气条件 | 规模 | Ref. | ||
|---|---|---|---|---|---|
| Pebax-C60(OH)24/PAN | 0.5 MPa,35 ℃ 混合气,RH=0 | 实验室规模 | 388 | 41 | [ |
| Pebax-MXene | 0.5 MPa,25 ℃ 混合气,RH=0 | 实验室规模 | 1360 | 31.4 | [ |
| PEG-SiO2 | 0.45 MPa,35 ℃ 纯气,RH=0 | 实验室规模 | 1300 | 27 | [ |
| MKP-PVAm/mPSf | 0.5 MPa,25 ℃ 混合气,RH=100% | 实验室规模 | 823 | 242 | [ |
| PVAm/HNTs | 0.2 MPa,25 ℃ 混合气,RH=100% | 实验室规模 | 179 | 127.9 | [ |
| Pebax/UiO-66-NH2 | 0.4 MPa,35 ℃ 混合气,RH=0 | 实验室规模 | 277 | 44.6 | [ |
| GO MMMs | 0.2 MPa,25 ℃ 混合气,RH=0 | 中试规模 | 1200 | 54 | [ |
| PVAm/UiO-66-NH2@PVAm(20) | 0.2 MPa,25 ℃ 混合气,RH=100% | 工业规模 | 2528 | 120 | 本工作 |
| PVAm/UiO-66-NH2@PVAm(20) | 0.5 MPa,25 ℃ 混合气,RH=100% | 工业规模 | 1046 | 63 | 本工作 |
Table 3 Comparison of the CO2/N2 separation performance of the MMMs produced in this chapter with the membranes reported in the literatures
| 膜 | 原料气条件 | 规模 | Ref. | ||
|---|---|---|---|---|---|
| Pebax-C60(OH)24/PAN | 0.5 MPa,35 ℃ 混合气,RH=0 | 实验室规模 | 388 | 41 | [ |
| Pebax-MXene | 0.5 MPa,25 ℃ 混合气,RH=0 | 实验室规模 | 1360 | 31.4 | [ |
| PEG-SiO2 | 0.45 MPa,35 ℃ 纯气,RH=0 | 实验室规模 | 1300 | 27 | [ |
| MKP-PVAm/mPSf | 0.5 MPa,25 ℃ 混合气,RH=100% | 实验室规模 | 823 | 242 | [ |
| PVAm/HNTs | 0.2 MPa,25 ℃ 混合气,RH=100% | 实验室规模 | 179 | 127.9 | [ |
| Pebax/UiO-66-NH2 | 0.4 MPa,35 ℃ 混合气,RH=0 | 实验室规模 | 277 | 44.6 | [ |
| GO MMMs | 0.2 MPa,25 ℃ 混合气,RH=0 | 中试规模 | 1200 | 54 | [ |
| PVAm/UiO-66-NH2@PVAm(20) | 0.2 MPa,25 ℃ 混合气,RH=100% | 工业规模 | 2528 | 120 | 本工作 |
| PVAm/UiO-66-NH2@PVAm(20) | 0.5 MPa,25 ℃ 混合气,RH=100% | 工业规模 | 1046 | 63 | 本工作 |
| [1] | CO2 emissions in 2023[R]. International Energy Agency, 2023. |
| [2] | 张贤, 杨晓亮, 鲁玺, 等. 中国CO2利用与封存(CCUS)年度报告(2023)[R]. 中国21世纪议程管理中心、全球碳捕集与封存研究院、清华大学, 2023. |
| Zhang X, Yang X L, Lu X, et al. Annual Report on China's CO2 Utilization and Storage (CCUS) (2023) [R]. China 21st Century Agenda Management Center, Global Carbon Capture and Storage Research Institute, Tsinghua University, 2023. | |
| [3] | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS) 年度报告(2021)――中国CCUS路径研究[R]. 生态环境部环境规划院、中国科学院武汉岩土所、中国21世纪议程管理中心, 2021. |
| Cai B F, Li Q, Zhang X, et al. Annual Report on Carbon Dioxide Capture, Utilization and Storage (CCUS) in China (2021) - Research on the CCUS Pathway in China [R] Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China 21st Century Agenda Management Center, 2021. | |
| [4] | 王志, 王宇新, 李保安, 等. 膜科学与技术[M]. 北京: 科学出版社, 2022. |
| Wang Z, Wang Y X, Li B A, et al. Membrane science and technology[M]. Beijing: Science Press, 2022. | |
| [5] | 荷)M . 米尔德著, 李琳 译. 膜技术基本原理[M]. 2版. 北京: 清华大学出版社, 1999: 221. |
| Mulder M, Li L, trans. Basic principles of membrane technology[M]. 2nd ed. Beijing: Tsinghua University Press, 1999: 221. | |
| [6] | Dechnik J, Gascon J, Doonan C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
| [7] | Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results[J]. Journal of Membrane Science, 2003, 211(2): 311-334. |
| [8] | Wang B, Qiao Z H, Xu J Y, et al. Unobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly[J]. Advanced Materials, 2020, 32(22): 1907701. |
| [9] | Yoo M J, Lee J H, Yoo S Y, et al. Defect control for large-scale thin-film composite membrane and its bench-scale demonstration[J]. Journal of Membrane Science, 2018, 566: 374-382. |
| [10] | Xu R, Wang Z, Wang M, et al. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 455-464. |
| [11] | Yuan Y, Yang Y, Shi F, et al. Polymer-modified nanofillers for enhancing CO2 separation performance of MMMs: a comparative study on the role of bridging ligands[J]. Journal of Membrane Science, 2024, 711: 123220. |
| [12] | Han Y, Salim W, Chen K K, et al. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas[J]. Journal of Membrane Science, 2019, 575: 242-251. |
| [13] | 伍泓宇. 碳捕集膜组件及装置构建研究[D]. 天津: 天津大学, 2023. |
| Wu H Y. Construction of membrane modules and plants for CO2 capture [D]. Tianjin: Tianjin University, 2023. | |
| [14] | 马翠花. 分离CO2薄层复合膜的结构设计调控[D]. 天津: 天津大学, 2022. |
| Ma C H. Structure design and control of thin-film composite membranes for CO2 separation[D]. Tianjin: Tianjin University, 2022. | |
| [15] | Yuan Y, Pan Y R, Sheng M L, et al. Synthesis and optimization of high-performance amine-based polymer for CO2 separation[J]. Chinese Journal of Chemical Engineering, 2022, 50: 168-176. |
| [16] | 陈羿戬, 生梦龙, 李庆华, 等. UiO-66-NH2合成及其在混合基质碳捕集膜中的应用[J]. 洁净煤技术, 2024, 30(10): 58-68. |
| Chen Y J, Sheng M L, Li Q H, et al. Synthesis of UiO-66-NH2 nanoparticles and its application in preparation of mixed-matrix membranes for carbon capture[J]. Clean Coal Technology, 2024, 30(10): 58-68. | |
| [17] | 生梦龙. CO2分离多层复合膜结构优化及性能强化[D]. 天津: 天津大学, 2022. |
| Sheng M L. Structure optimization and performance enhancement of the multilayer composite membrane for CO2 separation[D]. Tianjin: Tianjin University, 2022. | |
| [18] | Sheng M L, Dong S L, Qiao Z H, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595. |
| [19] | 董松林. 高性能CO2分离多层复合膜的研制及放大[D]. 天津: 天津大学, 2020. |
| Dong S L. Development and scaling up of the high-performance multilayer composite membrane for CO2 separation[D]. Tianjin: Tianjin University, 2020. | |
| [20] | Kandiah M, Nilsen M H, Usseglio S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
| [21] | Li B Y, Liu J X, He X T, et al. Covalent "Bridge-crosslinking" strategy constructs facilitated transport mixed matrix membranes for highly-efficient CO2 separation[J]. Journal of Membrane Science, 2023, 680: 121755. |
| [22] | Zhu J J, Wu L B, Bu Z Y, et al. Polyethyleneimine-modified UiO-66-NH2(Zr) metal–organic frameworks: preparation and enhanced CO2 selective adsorption[J]. ACS Omega, 2019, 4(2): 3188-3197. |
| [23] | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
| [24] | Wang W F, Yuan Y, Shi F, et al. Enhancing dispersibility of nanofiller via polymer-modification for preparation of mixed matrix membrane with high CO2 separation performance[J]. Journal of Membrane Science, 2023, 683: 121791. |
| [25] | Ren X L, Ren J Z, Li H, et al. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation[J]. International Journal of Greenhouse Gas Control, 2012, 8: 111-120. |
| [26] | 何文娟. 强化CO2分离膜选择透过机制的研究[D]. 天津: 天津大学, 2014. |
| He W J. Studies on improvement of permselectivity of: membranes for CO2 separation[D]. Tianjin: Tianjin University, 2014. | |
| [27] | Diaf A, Garcia J L, Beckman E J. Thermally reversible polymeric sorbents for acid gases: CO2, SO2, and NO x [J]. Journal of Applied Polymer Science, 1994, 53(7): 857-875. |
| [28] | Wu Y D, Zhao D, Ren J Z, et al. A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture[J]. Separation and Purification Technology, 2019, 215: 480-489. |
| [29] | Shamsabadi A A, Isfahani A P, Salestan S K, et al. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2T x MXene nanosheets[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3984-3992. |
| [30] | Kim J, Fu Q, Xie K, et al. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture[J]. Journal of Membrane Science, 2016, 515: 54-62. |
| [31] | Wang Y H, Bai X, Zhang X R, et al. Improving CO2 separation performance of PVAm membrane by the addition of polyethylenimine-functionalized halloysite nanotubes[J]. Journal of Membrane Science, 2023, 677: 121609. |
| [32] | Martínez-Izquierdo L, García-Comas C, Dai S, et al. Ultrasmall functionalized UiO-66 nanoparticle/polymer pebax 1657 thin-film nanocomposite membranes for optimal CO2 separation[J]. ACS Applied Materials & Interfaces, 2024, 16(3): 4024-4034. |
| [1] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [4] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [5] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [6] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [7] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [8] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [9] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [10] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [11] | Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems [J]. CIESC Journal, 2025, 76(8): 4108-4118. |
| [12] | Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution [J]. CIESC Journal, 2025, 76(8): 4095-4107. |
| [13] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [14] | Minghu JIANG, Fan WANG, Lei XING, Lixin ZHAO, Xinya LI, Dingwei CHEN. Influence of gas-containing on flow field characteristics and separation performance in oil-water separation string [J]. CIESC Journal, 2025, 76(7): 3361-3372. |
| [15] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||