CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 14-26.DOI: 10.11949/j.issn.0438-1157.20151468
Previous Articles Next Articles
XU Ji, LU Liqiang, GE Wei, LI Jinghai
Received:
2015-09-18
Revised:
2015-11-30
Online:
2016-01-05
Published:
2016-01-05
徐骥, 卢利强, 葛蔚, 李静海
通讯作者:
葛蔚
CLC Number:
XU Ji, LU Liqiang, GE Wei, LI Jinghai. Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1): 14-26.
徐骥, 卢利强, 葛蔚, 李静海. 基于EMMS范式的离散模拟及其化工应用[J]. 化工学报, 2016, 67(1): 14-26.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151468
[1] | LI J H, GE W, KWAUK M. Meso-scale phenomena from compromise—a common challenge, not only for chemical engineering [J/OL]. http://arxiv.org/abs/0912.5407. |
[2] | GE W, WANG W, YANG N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS Paradigm [J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
[3] | 李静海, 黄文来. 探索介科学:竞争中的协调原理[M]. 北京: 科学出版社, 2014.LI J H, HUANG W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Beijing: Science Press, 2014. |
[4] | LI J H, HUANG W L. Towards Mesoscience: the Principle of Compromise in Competition[M]. Berlin: Springer, 2014. |
[5] | LI J H, TUNG Y, KWAUK M. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow[M]//BASU P, LARGE J F. Circulating Fluidized Bed Technology. Pergamon, 1988: 89-103. |
[6] | 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院化工冶金研究所, 1987.LI J H. Multi-scale modeling and method of energy minimization in two-phase flow [D]. Beijing: Institute of Chemical Metallurgy, Chinese Academy of Sciences, 1987. |
[7] | LI J H, ZHANG J Y, GE W, et al. A simple variational criterion for turbulent flow in pipe [J]. Chemical Engineering Science, 1999, 54(8): 1151-1154. |
[8] | GE W, CHEN F G, GAO J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism [J]. Chemical Engineering Science, 2007, 62(13): 3346-3377. |
[9] | LI J H, GE W, WANG W, et al. Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering [J]. Particuology, 2010, 8(6): 634-639. |
[10] | GE W, LI J H. Pseudo-particle approach to hydrodynamics of gas/solid two-phase flow[C]//Proceedings of the 5th International Conference on Circulating Fluidized Bed. Beijing: Science Press, 1996: 260-265. |
[11] | GE W, LI J H. Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization [J]. Chemical Engineering Science, 2003, 58(8): 1565-1585. |
[12] | GE W, LI J H. Simulation of particle-fluid systems with macro-scale pseudo-particle modeling [J]. Powder Technology, 2003, 137(1/2): 99-108. |
[13] | GE W, LI J H. Conceptual model for massive parallel computing of discrete systems with local interactions [J]. Computers and Applied Chemistry, 2000, 17(5): 385-388. |
[14] | GE W, MA J S, ZHANG J Y, et al. Particle methods for multiscale simulation of complex flows [J]. Chinese Science Bulletin, 2005, 50(11): 1057-1069. |
[15] | 唐德祥. 粒子模拟并行计算通用平台的设计与初步应用[D]. 北京: 中国科学院过程工程研究所, 2005.TANG D X. A general method of parallel computation for particle methods and its preliminary applications[D]. Beijing: Institue of Process Engineering, Chinese Academy of Sciences, 2005. |
[16] | ALDER B J, WAINWRIGHT T E. Molecular Dynamics by Electronic Computers[M]. New York: Wiley, 1956. |
[17] | CUNDALL P A, STRACK O D L. A discrete numerical-model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65. |
[18] | HOOGERBRUGGE P J, KOELMAN J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. EPL (Europhysics Letters), 1992, 19(3): 155-160. |
[19] | BIRD G A. Approach to translational equilibrium in a rigid sphere gas [J]. Physics of Fluids, 1963, 6(10): 1518-1519. |
[20] | TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe [J]. Powder Technology, 1992, 71(3): 239-250. |
[21] | LU L Q, XU J, GE W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows [J]. Chemical Engineering Science, 2014, 120: 67-87. |
[22] | ANDREWS M J, OROURKE P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows [J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
[23] | GE W, LU L Q, LIU S W, et al. Multiscale discrete supercomputing-a game changer for process simulation? [J]. Chemical Engineering & Technology, 2015, 38(4): 575-584. |
[24] | XU J, REN Y, GE W, et al. Molecular dynamics simulation of macromolecules using graphics processing unit [J]. Molecular Simulation, 2010, 36(14): 1131-1140. |
[25] | XU J, HAN M Z, REN Y, et al. The principle of compromise in competition: exploring stability condition of protein folding [J]. Science Bulletin, 2015, 60(1): 76-85. |
[26] | PERUTZ M. Electrostatic effects in proteins [J]. Science, 1978, 201(4362): 1187-1191. |
[27] | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
[28] | GE W, LI J H. General approach for discrete simulation of complex systems [J]. Chinese Science Bulletin, 2002, 47(14): 1172-1175. |
[29] | 王小伟. 可叠加近程作用粒子系统模拟的并行计算框架及通用化研究[D]. 北京: 中国科学院过程工程研究所, 2008.WANG X W. A framework for parallel simulation of particle systems with pair-additive local interactions — toward a general approach[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2008. |
[30] | RYCKAERT J-P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes [J]. Journal of Computational Physics, 1977, 23(3): 327-341. |
[31] | HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations [J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472. |
[32] | DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems [J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092. |
[33] | ESSMANN U, PERERA L, BERKOWITZ M, et al. A smooth particle mesh Ewald method [J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
[34] | LENNARD-JONES J E. Cohesion [J]. Proceedings of the Physical Society, 1931, 43(5): 461-482. |
[35] | HERTZ H. Miscellaneous Papers [M]. JONES D E, SCHOTT G A, trans. London, UK: Macmillan, 1896. |
[36] | LI B, ZHOU G Z, GE W, et al. A multi-scale architecture for multi-scale simulation and its application to gas-solid flows [J]. Particuology, 2014, 15(0): 160-169. |
[37] | WANG X W, GE W. The Mole-8.5 Supercomputing System[M]. Chapman & Hall/CRC, 2013. |
[38] | WANG X W, GE W, HE X F, et al. Development and application of a HPC system for multi-scale discrete simulation-Mole-8.5[C]//International Supercomputing Conference. Germany, 2010. |
[39] | GE W, XU J, XIONG Q G, et al. Multi-scale Continuum-Particle Simulation on CPU-GPU Hybrid Supercomputer[M]. Heidelberg, Berlin: Springer, 2013. |
[40] | Intel. Molecular dynamics optimization on Intel® many integrated core archi-tecture (Intel® MIC)[OL]. 2013. http://software. intel.com/en-us/articles/molecular-dynamics-optimization-on-intel-many-integrated-core-architecture-intel-mic |
[41] | NVIDIA CUDA. Compute Unified Device Architecture-CUDA Programming Guide.[M]. Santa Clara, CA: 2006. |
[42] | HOU C F, XU J, WANG P, et al. Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A [J]. International Journal of High Performance Computing Applications, 2013, 27(3): 307-317. |
[43] | 徐骥. GPU加速度的大分子体系分子动力学方法——实现与应用[D]. 北京: 中国科学院过程工程研究所, 2012.XU J. GPU accelerated MD simulation for macromolecular systems[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2012. |
[44] | QI H B, XU J, ZHOU G Z, et al. Numerical investigation of granular flow similarity in rotating drums [J]. Particuology, 2015, 22(0): 119-127. |
[45] | DI S B, GE W. Simulation of dynamic fluid-solid interactions with an improved direct-forcing immersed boundary method [J]. Particuology, 2015, 18: 22-34. |
[46] | XU J, QI H B, FANG X J, et al. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing [J]. Particuology, 2011, 9(4): 446-450. |
[47] | XIONG Q G, LI B, ZHOU G Z, et al. Large-scale DNS of gas-solid flows on Mole-8.5 [J]. Chemical Engineering Science, 2012, 71: 422-430. |
[48] | XIONG Q G, LI B, XU J. GPU-accelerated adaptive particle splitting and merging in SPH [J]. Computer Physics Communications, 2013, 184(7): 1701-1707. |
[49] | KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere Discrete Element Method [J]. Powder Technology, 2008, 188(2): 153-165. |
[50] | 戚华彪. 基于GPU的离散模拟在颗粒流动与混合机理研究中的应用[D]. 北京: 中国科学院过程工程研究所, 2014.QI H B. Application of GPU-based discrete simulation to the study of flow and mixing mechanisms of granular materials[D]. Beijing: University of Chinese Academy of Sciences, 2014. |
[51] | XU J, REN Y, GE W, et al. Mole-MD V1.0[CP]. 2010SRBJ0465, Chinese Software register, 2010. |
[52] | XU J, QI H B, GE W, et al. DEMMS V2.0[CP]. 2013SRBJ0125, Chinese Software register, 2013. |
[53] | XU J, QI H B, GE W, et al. DEMMS V3.0[CP]. 2014SRBJ0786, Chinese Software register, 2014. |
[54] | XU J, WANG X W, HE X F, et al. Application of the Mole-8.5 supercomputer: probing the whole influenza virion at the atomic level [J]. Chinese Science Bulletin, 2011, 56(20): 2114-2118. |
[55] | REN X X, XU J, QI H B, et al. GPU-based discrete element simulation on a tote blender for performance improvement [J]. Powder Technology, 2013, 239: 348-357. |
[56] | YUAN F-W, TUAN H-Y. Supercritical fluid-solid growth of single-crystalline silicon nanowires: an example of metal-free growth in an organic solvent [J]. Crystal Growth & Design, 2010, 10(11): 4741-4745. |
[57] | GUO Y, CURTIS J S. Discrete element method simulations for complex granular flows [J]. Annual Review of Fluid Mechanics, 2015, 47(1): 21-46. |
[58] | LACEY P M C. Developments in the theory of particle mixing [J]. Journal of Applied Chemistry, 1954, 4(5): 257-268. |
[59] | LEVENSPIEL O. Chemical Reaction Engineering[M]. New York: Wiley, 1998. |
[60] | VARGAS-ESCOBAR W L. Discrete Modeling of Heat Conduction in Granular Media[M]. Pittsburgh: University of Pittsburgh, 2002. |
[61] | WANG L M, ZHOU G Z, WANG X W, et al. Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method [J]. Particuology, 2010, 8(4): 379-382. |
[62] | XIONG Q G, LI B, CHEN F G, et al. Direct numerical simulation of sub-grid structures in gas-solid flow—GPU implementation of macro-scale pseudo-particle modeling [J]. Chemical Engineering Science, 2010, 65(19): 5356-5365. |
[63] | LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation(Ⅰ): Theoretical foundation [J]. Journal of Fluid Mechanics, 1994, 271: 285-309. |
[64] | 狄升斌. 基于浸入边界法的复杂流动多尺度模拟[D]. 北京:中国科学院大学, 2015.DI S B. Multi-scale modeling and numerical simulation of complex flows based on immersed boundary method[D]. Beijing: University of Chinese Academy of Sciences, 2015. |
[65] | DEEN N G, KRIEBITZSCH S H L, VAN DER HOEF M A, et al. Direct numerical simulation of flow and heat transfer in dense fluid-particle systems [J]. Chemical Engineering Science, 2012, 81: 329-344. |
[66] | MA J S, GE W, WANG X W, et al. High-resolution simulation of gas-solid suspension using macro-scale particle methods [J]. Chemical Engineering Science, 2006, 61(21): 7096-7106. |
[67] | MA J S, GE W, XIONG Q G, et al. Direct numerical simulation of particle clustering in gas-solid flow with a macro-scale particle method [J]. Chemical Engineering Science, 2009, 64(1): 43-51. |
[68] | PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10(2): 252-271. |
[69] | SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91(3): 99-164. |
[70] | GIDASPOW D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description[M]. New York: Academic Press, 1994. |
[71] | ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. Equations of motion [J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
[72] | XU M, CHEN F G, LIU X H, et al. Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU-GPU hybrid computation [J]. Chemical Engineering Journal, 2012, 207: 746-757. |
[73] | XU M, GE W, LI J H. A discrete particle model for particle-fluid flow with considerations of sub-grid structures [J]. Chemical Engineering Science, 2007, 62(8): 2302-2308. |
[74] | XU B H, YU A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52(16): 2785-2809. |
[75] | SYAMLAL M, PANNALA S. Multiphase Continuum Formulation for Gas-Solids Reacting Flows[M]. Hershey, New York: Engineering Science Reference, 2011. |
[76] | KUNII D, LEVENSPIEL O. Fluidization Engineering[M]. 2nd ed. Stoneham, MA (United States): Butterworth Publishers, 1991. |
[77] | LIU X H, GUO L, XIA Z J, et al. Harnessing the power of virtual reality [J]. Chemical Engineering Progress, 2012, (7): 28-32. |
[78] | XU J, LI X X, HOU C F, et al. Engineering molecular dynamics simulation in chemical engineering [J]. Chemical Engineering Science, 2015, 121: 200-216. |
[79] | CHEN W C, GAO Y. The effect of reducing coal slurry particle size on operation of multi-nozzle oppositely placed coal-water slurry gasification system [J]. Chemical Fertilizer Industry, 2015, 42(2): 36-38. |
[80] | SAKAI M, KOSHIZUKA S. Large-scale discrete element modeling in pneumatic conveying [J]. Chemical Engineering Science, 2009, 64(3): 533-539. |
[81] | SHAW D E, DENEROFF M M, DROR R O, et al. Anton, a special-purpose machine for molecular dynamics simulation [J]. SIGARCH Comput. Archit. News, 2007, 35(2): 1-12. |
[82] | SHAW D E, GROSSMAN J P, BANK J A, et al. Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC14). Piscataway, NJ, USA: IEEE Press, 2014: 41-53 |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[7] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[10] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[11] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[12] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[13] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[14] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[15] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||