[1] |
BONVIN D, SRINIVASAN B, HUNKELER D. Control and optimization of batch processes[J]. IEEE Control Systems Magazine, 2006, 26 (6): 34-45. DOI: 10.1109/MCS.2006.252831.
|
[2] |
叶凌箭, 马修水, 宋执环. 不确定性间歇过程的一种实时优化控制方法[J]. 化工学报, 2014, 65 (9): 3535-3543. DOI: 10.3969/j.issn. 0438-1157.2014.09.031. YE L J, MA X S, SONG Z H. A real-time optimization approach for uncertain batch processes[J]. CIESC Journal, 2014, 65 (9): 3535-3543. DOI: 10.3969/j.issn.0438-1157.2014.09.031.
|
[3] |
刘毅, 林传东, 高增梁. 基于粒子群优化的连续发酵过程PID控制[J]. 石油化工自动化, 2012, 48 (1): 52-55. DOI: 10.3969/j.issn. 1007-7324.2012.01.016 LIU Y, LIN C D, GAO Z L. Particle swarm optimization-based PID control for continuous fermentation process[J]. Automation in Petro-Chemical Industry, 2012, 48 (1): 52-55. DOI: 10.3969/j.issn. 1007-7324.2012.01.016.
|
[4] |
CHEN J H, HUANG T C. Applying neural networks to on-line updated PID controllers for nonlinear process control[J]. Journal of Process Control, 2004, 14 (2): 211-230. DOI: 10.1016/S0959-1524(03)00039-8.
|
[5] |
KAO C C, CHUANG C W, FUNG R F. The self-tuning PID control in slider-crank mechanism system by applying particle swarm optimization approach[J]. Mechatronics, 2006, 16 (8): 513-522. DOI: 10.1016/j.mechatronics.2006.03.007.
|
[6] |
CHANG W D, HWANG R C, HSIEH J G. A multivariable on-line adaptive PID controller using auto-tuning neurons[J]. Engineering Applications of Artificial Intelligence, 2003, 16 (1): 57-63. DOI: 10.1016/S0952-1976(03)00023-X.
|
[7] |
LEE K S, LEE J H. Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables[J]. Journal of Process Control, 2003, 13 (7): 607-621. DOI: 10.1016/S0959-1524(02)00096-3.
|
[8] |
XIONG Z H, ZHANG J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models[J]. Journal of Process Control, 2005, 15 (1): 11-21. DOI: 10.1016/j.jprocont. 2004.04.005.
|
[9] |
贾立, 师继平, 邱铭森. 一类间歇生产过程的迭代学习控制算法及其收敛性分析[J]. 化工学报, 2010, 61 (1): 116-122. JIA L, SHI J P, CHIU M S. An iterative learning control algorithm with convergence analysis for batch processes[J]. CIESC Journal, 2010, 61 (1): 116-122.
|
[10] |
WANG Y Q, LIU T, ZHAO Z. Advanced PI control with simple learning set-point design: application on batch processes and robust stability analysis[J]. Chemical Engineering Science, 2012, 71: 153-165. DOI: 10.1016/j.ces.2011.12.028.
|
[11] |
SHEN D, WANG Y Q. Survey on stochastic iterative learning control[J]. Journal of Process Control, 2014, 24 (12): 64-77. DOI: 10.1016/j.jprocont.2014.04.013.
|
[12] |
WANG Y Q, GAO F R, DOYLE Ⅲ F J. Survey on iterative learning control, repetitive control, and run-to-run control[J]. Journal of Process Control, 2009, 19 (10): 1589-1600. DOI: 10.1016/j.jprocont. 2009.09.006.
|
[13] |
CHEN T, LIU Y, CHEN J H. An integrated approach to active model adaptation and on-line dynamic optimization of batch process[J]. Journal of Process Control, 2013, 23 (10): 1350-1359. DOI: 10.1016/j.jprocont.2013.09.010.
|
[14] |
EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43. DOI: 10.1109/MHS.1995.494215.
|
[15] |
王友清, 周东华, 高福荣. 迭代学习控制的二维模型理论及其应用[M]. 北京: 科学出版社, 2013: 159-193. WANG Y Q, ZHOU D H, GAO F R. Two-dimensional Model Theory of Iterative Learning Control and Its Application[M]. Beijing: Science Press, 2013: 159-193.
|
[16] |
HENSON M A, SEBORG D E. An internal model control strategy for nonlinear system[J]. AIChE Journal, 1991, 37 (7): 1065-1081. DOI: 10.1002/aic.690370711.
|
[17] |
RADHAKRISHNAN T K, SUNDARAMS S, CHIDAMBARAM M. Non-linear control of continuous bioreactors[J]. Bioprocess Engineering, 1999, 20 (2): 173-178. DOI: 10.1007/s004490050577.
|
[18] |
VENKATESWARLU C, NAIDU K V S. Dynamic fuzzy model based predictive controller for a biochemical reactor[J]. Bioprocess Engineering, 2000, 23 (2): 113-120. DOI: 10.1007/s004499900131.
|
[19] |
LIU Y, CHEN W L, GAO Z L, et al. Adaptive control of nonlinear time-varying processes using selective recursive kernel learning method[J]. Industrial and Engineering Chemistry Research, 2011, 50 (5): 2773-2780. DOI: 10.1021/ie100634k.
|
[20] |
LIU Y, CHEN T, CHEN J H. Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions[J]. Industrial and Engineering Chemistry Research, 2015, 54 (18): 5037-5047. DOI: 10.1021/ie504185j.
|