[1] |
LAMRAOUI F, FORTIN G, BENOIT R, et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology, 2014, 100: 36-49. DOI: 10.1016/j.coldregions.2013. 12.008.
|
[2] |
BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. DOI:10.1016/j.paerosci.2005.07.001.
|
[3] |
MORITA K, OKAMOTO K, AOKI A, et al. Hydrophobic coating study for anti-icing aircraft[R]. SAE Technical Paper, 2011.
|
[4] |
ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1/2): 58-67. DOI: 10.1016/j.coldregions.2011.02.006.
|
[5] |
KIMURA S, YAMAGISHI Y, SAKABE A, et al. A new surface coating for prevention of icing on airfoils[R]. SAE Technical Paper, 2007.
|
[6] |
MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. DOI:10.2514 /8.2520.
|
[7] |
BRAKEL T W, CHARPIN J P F, MYERS T G. One-dimensional ice growth due to incoming supercooled droplets impacting on a thin conducting substrate[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1694-1705. DOI:10.1016/j.ijheatmasstransfer. 2006.10.014.
|
[8] |
JUNG S, DORRESTIJN M, RAPS D, et al. Are super-hydrophobic surfaces best for icephobicity?[J]. Langmuir, 2011, 27(6): 3059-3066. DOI:10.1021/la104762g.
|
[9] |
FEUILLEBOIS F, LASEK A, CREISMEAS P, et al. Freezing of a subcooled liquid droplet[J]. Journal of Colloid and Interface Science, 1995, 169(1): 90-102. DOI:10.1006 /jcis.1995.1010.
|
[10] |
王皆腾, 刘中良, 勾昱君, 等. 冷表面上水滴冻结过程的研究[J]. 工程热物理学报, 2007, 28(6): 989-991. DOI:10.3321/j.issn: 0253-231X.2007.06.028. WANG J T, LIU Z L, GOU Y J, et al. Study of freezing process of water droplet on cold surface[J]. Journal of Engineering Thermophysics, 2007, 28(6): 989-991. DOI:10.3321/j.issn: 0253-231X. 2007.06.028.
|
[11] |
CHAUDHARY G, LI R. Freezing of water droplets on solid surfaces: an experimental and numerical study[J]. Experimental Thermal and Fluid Science, 2014, 57: 86-93. DOI:10.1016/j.expthermflusci. 2014.04.007.
|
[12] |
HINDMARSH J P, RUSSELL A B, CHEN X D. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet[J]. International Journal of Heat and Mass Transfer, 2003, 46(7): 1199-1213. DOI:10.1016/S0017- 9310(02)00399-X.
|
[13] |
WANG H, HE G, TIAN Q. Effects of nano-fluorocarbon coating on icing[J]. Applied Surface Science, 2012, 258(18): 7219-7224. DOI:10.1016/j.apsusc.2012.04.043.
|
[14] |
MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707. DOI:10.1021/ nn102557p.
|
[15] |
LI H, ROISMAN I V, TROPEA C. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6) DOI:10.1007/s00348-015-1999-2.
|
[16] |
BLAKE J, THOMPSON D, RAPS D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7): 1725-1739. DOI:10.2514/1.J053391.
|
[17] |
梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. DOI: 10.3969/j.issn. 0438-1157.2013.08.006 LIANG C, WANG H, ZHU X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8): 2745-2751. DOI: 10.3969/j.issn. 0438-1157.2013.08.006
|
[18] |
郑志伟, 李大树, 仇性启, 等. 液滴碰撞球形凹曲面复合level set-VOF法的数值分析[J]. 化工学报, 2015, 66(5): 1667-1675. DOI: 10.11949/j.issn.0438-1157.20141116. ZHENG Z W, LI D S, QIU X Q, et al. Numerical analysis of coupled level set-VOF method on droplet impact on spherical concave surface[J]. CIESC Journal, 2015, 66(5): 1667-1675. DOI: 10.11949/j.issn.0438-1157.20141116.
|
[19] |
徐爽, 赵宁, 王春武, 等. 低速下水滴撞击固体表面运动模拟[J]. 航空动力学报, 2013, 28(3): 695-700. DOI: 10.13224/j.cnki. jasp.2013.03.030. XU S, ZHAO N, WANG C W, et al. Simulation of droplets impacting on solid surface at low velocity[J]. Journal of Aerospace Power, 2013, 28(3): 695-700. DOI: 10.13224/j.cnki.jasp.2013.03.030.
|
[20] |
BRIONES A M, ERVIN J S, PUTNAM S A, et al. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface[J]. Langmuir, 2010, 26(16): 13272-13286. DOI:10.1021/ la101557p.
|
[21] |
STROTOS G, ALEKSIS G, GAVAISES M, et al. Non- dimensionalisation parameters for predicting the cooling effectiveness of droplets impinging on moderate temperature solid surfaces[J]. International Journal of Thermal Sciences, 2011, 50(5): 698-711. DOI:10.1016/j.ijthermalsci.2010. 11.021.
|
[22] |
KUMAR A. Solidification of impinging molten metal droplet on a cold substrate[J]. International Journal of Mechanical Engineering and Robotics Research, 2014, 3(2): 86-497.
|
[23] |
SUSSMAN M, PUCKETT E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. DOI: 10.1006/jcph.2000.6537.
|
[24] |
车得福, 李会雄. 多相流及其应用[M]. 西安: 西安交通大学出版社, 2007: 260. CHE D F, LI H X. Multiphase Flow and Its Applications[M]. Xi'an: Xi'an Jiaotong University Press, 2007: 260.
|
[25] |
JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. DOI:10.1038/ncomms1630.
|
[26] |
VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI:10.1016/0017-9310(87)90317-6.
|