CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3266-3278.DOI: 10.11949/0438-1157.20230723
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chen HAN1(), Youmin SITU1, Bin ZHU2, Jianliang XU1(
), Xiaolei GUO1, Haifeng LIU1
Received:
2023-07-12
Revised:
2023-08-19
Online:
2023-10-18
Published:
2023-08-25
Contact:
Jianliang XU
韩晨1(), 司徒友珉1, 朱斌2, 许建良1(
), 郭晓镭1, 刘海峰1
通讯作者:
许建良
作者简介:
韩晨(1998—), 男, 硕士研究生, 1395262227@qq.com
基金资助:
CLC Number:
Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater[J]. CIESC Journal, 2023, 74(8): 3266-3278.
韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278.
k | n | ||
---|---|---|---|
6.8×1015 | 1.68×108 | — | |
2.2×1012 | 1.67×108 | — | |
3.0×108 | 1.26×108 | — | |
4.1×1011 | 1.68×108 | — | |
2.75×1010 | 8.38×107 | — | |
8710 | 17967 | 0.65 | |
4.4 | 1.47×108 | 0.6 | |
1.33 | 1.62×108 | 0.4 |
Table 1 Reaction kinetics[14,29-30]
k | n | ||
---|---|---|---|
6.8×1015 | 1.68×108 | — | |
2.2×1012 | 1.67×108 | — | |
3.0×108 | 1.26×108 | — | |
4.1×1011 | 1.68×108 | — | |
2.75×1010 | 8.38×107 | — | |
8710 | 17967 | 0.65 | |
4.4 | 1.47×108 | 0.6 | |
1.33 | 1.62×108 | 0.4 |
项目 | ||||||||
---|---|---|---|---|---|---|---|---|
碳转化率≥ | 碳转化率< | 碳转化率≥ | 碳转化率< | |||||
黏附 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | |
反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 反弹 | 反弹 | 反弹 |
Table 2 Criterion of particles adhesion[22]
项目 | ||||||||
---|---|---|---|---|---|---|---|---|
碳转化率≥ | 碳转化率< | 碳转化率≥ | 碳转化率< | |||||
黏附 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | |
反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 反弹 | 反弹 | 反弹 |
参数 | 数值 |
---|---|
氧气流量/(k·h-1) | 104956.48 |
粉煤流量/(kg·h-1) | 139868.00 |
CO2流量/(kg·h-1) | 29145.15 |
粉煤密度/(kg·m-3) | 1400 |
废液密度/(kg·m-3) | 848 |
废液温度/K | 320 |
渣厚度/mm | 10 |
渣热导率/(W·m-1·K-1) | 1.42 |
锅炉水压力/MPa(G) | 5.0 |
操作压力/MPa(G) | 4.0 |
Table 3 Boundary conditions
参数 | 数值 |
---|---|
氧气流量/(k·h-1) | 104956.48 |
粉煤流量/(kg·h-1) | 139868.00 |
CO2流量/(kg·h-1) | 29145.15 |
粉煤密度/(kg·m-3) | 1400 |
废液密度/(kg·m-3) | 848 |
废液温度/K | 320 |
渣厚度/mm | 10 |
渣热导率/(W·m-1·K-1) | 1.42 |
锅炉水压力/MPa(G) | 5.0 |
操作压力/MPa(G) | 4.0 |
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | 水分 | C | H | O | N | S |
19.76 | 56.15 | 21.89 | 2.20 | 62.18 | 4.16 | 9.36 | 1.18 | 0.74 |
Table 4 Coal analysis data
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | 水分 | C | H | O | N | S |
19.76 | 56.15 | 21.89 | 2.20 | 62.18 | 4.16 | 9.36 | 1.18 | 0.74 |
成分 | 占比/%(质量) |
---|---|
环己酮 | 1.99 |
环己醇 | 0.46 |
苯 | 1.34 |
己内酰胺 | 25.57 |
水 | 52.74 |
盐类及杂质 | 17.89 |
Table 5 Wastewater composition
成分 | 占比/%(质量) |
---|---|
环己酮 | 1.99 |
环己醇 | 0.46 |
苯 | 1.34 |
己内酰胺 | 25.57 |
水 | 52.74 |
盐类及杂质 | 17.89 |
数据 | CO/% | CO2/% | H2/% | N2/% | 碳转化率/% | 出口 温度/K |
---|---|---|---|---|---|---|
工业数据Ⅰ | 71.99 | 1.01 | 25.5 | 0.8 | 99.5 | 1608 |
模拟数据Ⅰ | 71.42 | 1.11 | 25.15 | 0.62 | 99.9 | 1589 |
工业数据Ⅱ | 70.94 | 1.29 | 21.65 | 5.78 | 99.0 | 1852 |
模拟数据Ⅱ | 69.65 | 1.23 | 22.86 | 6.04 | 99.3 | 1877 |
工业数据Ⅲ | 47.84 | 15.54 | 36.16 | 0.44 | 98.9 | 1562 |
模拟数据Ⅲ | 48.76 | 14.23 | 36.08 | 0.34 | 98.82 | 1602 |
Table 6 Comparison of simulation data with industrial data of gasifier outlet syngas
数据 | CO/% | CO2/% | H2/% | N2/% | 碳转化率/% | 出口 温度/K |
---|---|---|---|---|---|---|
工业数据Ⅰ | 71.99 | 1.01 | 25.5 | 0.8 | 99.5 | 1608 |
模拟数据Ⅰ | 71.42 | 1.11 | 25.15 | 0.62 | 99.9 | 1589 |
工业数据Ⅱ | 70.94 | 1.29 | 21.65 | 5.78 | 99.0 | 1852 |
模拟数据Ⅱ | 69.65 | 1.23 | 22.86 | 6.04 | 99.3 | 1877 |
工业数据Ⅲ | 47.84 | 15.54 | 36.16 | 0.44 | 98.9 | 1562 |
模拟数据Ⅲ | 48.76 | 14.23 | 36.08 | 0.34 | 98.82 | 1602 |
废液流量/(t·h-1) | CO/%(体积) | H2/%(体积) | H2O/%(体积) | CO2/%(体积) | 出口温度/K | 碳转化率/% |
---|---|---|---|---|---|---|
0 | 64.15 | 22.53 | 7.20 | 5.31 | 1780 | 99.48 |
2 | 63.33 | 23.10 | 7.25 | 5.40 | 1763 | 99.37 |
4 | 62.53 | 23.62 | 7.33 | 5.55 | 1746 | 99.28 |
6 | 61.98 | 24.09 | 7.44 | 5.62 | 1731 | 99.18 |
8 | 61.34 | 24.46 | 7.61 | 5.76 | 1719 | 99.09 |
10 | 60.65 | 24.80 | 7.68 | 5.97 | 1705 | 99.00 |
12 | 59.98 | 25.05 | 7.89 | 6.18 | 1691 | 98.94 |
14 | 59.21 | 25.18 | 8.15 | 6.33 | 1677 | 98.82 |
16 | 58.63 | 25.30 | 8.48 | 6.63 | 1667 | 98.68 |
Table 7 Gasification performance under different wastewater mass flow rates
废液流量/(t·h-1) | CO/%(体积) | H2/%(体积) | H2O/%(体积) | CO2/%(体积) | 出口温度/K | 碳转化率/% |
---|---|---|---|---|---|---|
0 | 64.15 | 22.53 | 7.20 | 5.31 | 1780 | 99.48 |
2 | 63.33 | 23.10 | 7.25 | 5.40 | 1763 | 99.37 |
4 | 62.53 | 23.62 | 7.33 | 5.55 | 1746 | 99.28 |
6 | 61.98 | 24.09 | 7.44 | 5.62 | 1731 | 99.18 |
8 | 61.34 | 24.46 | 7.61 | 5.76 | 1719 | 99.09 |
10 | 60.65 | 24.80 | 7.68 | 5.97 | 1705 | 99.00 |
12 | 59.98 | 25.05 | 7.89 | 6.18 | 1691 | 98.94 |
14 | 59.21 | 25.18 | 8.15 | 6.33 | 1677 | 98.82 |
16 | 58.63 | 25.30 | 8.48 | 6.63 | 1667 | 98.68 |
1 | 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
2 | Aprianti N, Faizal M, Said M, et al. Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis[J]. Energy, 2023, 268: 126666. |
3 | Lv B, Deng X W, Jiao F S, et al. Enrichment and utilization of residual carbon from coal gasification slag: a review[J]. Process Safety and Environmental Protection, 2023, 171: 859-873. |
4 | 李卫华. 碳达峰背景下我国煤炭利用效率测算及提升[J]. 煤炭技术, 2021, 40(11): 239-241. |
Li W H. China's coal utilization efficiency calculation and improvement under background of carbon peak[J]. Coal Technology, 2021, 40(11): 239-241. | |
5 | 王利峰. 我国煤气化技术发展与展望[J]. 洁净煤技术, 2022, 28(2): 115-121. |
Wang L F. Development and prospect of coal gasification technology in China[J]. Clean Coal Technology, 2022, 28(2): 115-121. | |
6 | Higman C, Tam S. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels[J]. Chemical Reviews, 2014, 114(3): 1673-1708. |
7 | Wang F C, Yu G S, Liu H F, et al. Opposed multi-burner gasification technology: recent process of fundamental research and industrial application[J]. Chinese Journal of Chemical Engineering, 2021, 35: 124-142. |
8 | Chang S H. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review[J]. Environmental Science and Pollution Research, 2020, 27(26): 32371-32388. |
9 | 汪向阳, 陈金思, 胡献国, 等. 乙醇/苯胺废液热解及燃烧动力学研究[J]. 环境工程, 2016, 34(S1): 1117-1124. |
Wang X Y, Chen J S, Hu X G, et al. Pyrolysis and combustion kinetics analysis of ethanol/aniline wastewater[J]. Environmental Engineering, 2016, 34(S1): 1117-1124. | |
10 | Wang D W, Zhao G B, Du C M, et al. Combustion characteristics of plant chemical polyol waste liquor in a pilot water-cooled Incinerator[J]. Energies, 2019, 12(22): 4369. |
11 | Gu S Q, Xu Z Q, Dai Y X, et al. The resource utilization of coal gasification wastewater by co-slurry with lignite: slurryability, dispersion/aggregation behavior, and co-slurrying mechanisms[J]. Fuel, 2023, 352: 129114. |
12 | Chen Y H, Lan Thao Ngo T N, Chiang K Y. Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14083-14095. |
13 | 邵守言, 郭庆华, 陈雪莉, 等. 酒精发酵废液煤浆气流床气化实验研究[J]. 煤炭转化, 2009, 32(4): 39-43. |
Shao S Y, Guo Q H, Chen X L, et al. Experimental study of coal alcohol fermentation wastewater slurry entrained-flow gasification[J]. Coal Conversion, 2009, 32(4): 39-43. | |
14 | Sun Z H, Dai Z H, Zhou Z J, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569. |
15 | 代正华, 刘海峰, 于广锁, 等. 四喷嘴对置式撞击流的数值模拟[J]. 华东理工大学学报, 2004, 30(1): 65-68. |
Dai Z H, Liu H F, Yu G S, et al. Numeric simulation of the flow field in four opposed impinging jets[J]. Journal of East China University of Science and Technology, 2004, 30(1): 65-68. | |
16 | Xu J L, Zhao H, Dai Z H, et al. Numerical simulation of opposed multi-burner gasifier under different coal loading ratio[J]. Fuel, 2016, 174: 97-106. |
17 | Gong Y, Guo Q H, Zhu H W, et al. Refractory failure in entrained-flow gasifier: investigation of partitioned erosion characteristics in an industrial opposed multi-burner gasifier[J]. Chemical Engineering Science, 2019, 210: 115227. |
18 | Lin K, Shen Z J, Liang Q F, et al. Modelling of slag flow and prediction of corrosion state of refractory bricks in an entrained-flow gasifier[J]. Fuel, 2020, 275: 117979. |
19 | Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth[J]. Progress in Energy and Combustion Science, 1990, 16(4): 327-345. |
20 | Shannon G N, Rozelle P L, Pisupati S V, et al. Conditions for entrainment into a FeO x containing slag for a carbon-containing particle in an entrained coal gasifier[J]. Fuel Processing Technology, 2008, 89(12): 1379-1385. |
21 | Li S H, Whitty K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Processing Technology, 2012, 95: 127-136. |
22 | Yong S Z, Gazzino M, Ghoniem A. Modeling the slag layer in solid fuel gasification and combustion—formulation and sensitivity analysis[J]. Fuel, 2012, 92(1): 162-170. |
23 | Lin F F, Shen Z J, Liang Q F, et al. Comprehensive adhesion model based on the surface characteristics of the coal particles[J]. Fuel, 2022, 315: 123219. |
24 | 葛琎, 张椰, 何勇, 等. 顶喷加压粉煤气化炉及壁面灰渣沉积的数值模拟研究[J]. 燃烧科学与技术, 2022, 28(4): 371-378. |
Ge J, Zhang Y, He Y, et al. Numerical simulation of ash deposition on the wall of a top-spray pulverized coal gasifier[J]. Journal of Combustion Science and Technology, 2022, 28(4): 371-378. | |
25 | Xu J L, Dai Z H, Liu H F, et al. Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier[J]. Chemical Engineering Science, 2017, 162: 41-52. |
26 | Wu Y X, Zhang J S, Smith P J, et al. Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy& Fuels, 2010, 24(2): 1156-1163. |
27 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
28 | 贺翔宇, 邱剑勇, 许建良, 等. 辐射废锅内熔渣传热过程动态分析[J]. 高校化学工程学报, 2020, 34(2): 326-334. |
He X Y, Qiu J Y, Xu J L, et al. Dynamic analysis of heat transfer processes of molten slag in a radiant syngas cooler[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 326-334. | |
29 | Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel, 2006, 85(12): 1935-1943. |
30 | Choi Y C, Li X Y, Park T J, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001, 80(15): 2193-2201. |
31 | Blasiak W, Tao L, Vaclavinek J, et al. Modeling of kraft recovery boilers[J]. Energy Conversion and Management, 1997, 38(10): 995-1005. |
32 | Song X F, Ji X Y, Bie H P, et al. Characteristics of gas and char generation study from reed black liquor particles (RBLP) pyrolysis in fluidized bed[J]. Fuel, 2015, 159: 89-97. |
33 | 王大伟, 赵广播, 李瑀婷. 植物化工醇废液热解动力学研究[J]. 节能技术, 2018, 36(4): 291-295. |
Wang D W, Zhao G B, Li Y T. Kinetics of plant chemical polyol waste liquor pyrolysis[J]. Energy Conservation Technology, 2018, 36(4): 291-295. | |
34 | Merrick D. Mathematical models of the thermal decomposition of coal(1): The evolution of volatile matter[J]. Fuel, 1983, 62(5): 534-539. |
35 | 许建良, 赵辉, 代正华, 等. 单喷嘴水煤浆气化炉高径比对反应流动的影响[J]. 化学工程, 2016, 44(4): 68-73. |
Xu J L, Zhao H, Dai Z H, et al. Influences of height-diameter ratio on multiphase reaction flow of single-burner coal water slurry gasifier[J]. Chemical Engineering(China), 2016, 44(4): 68-73. | |
36 | Magnussen B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C]//Proceeding of the 19th Aerospace Sciences Meeting. Reston, Virginia: AIAA, 1981: 42. |
37 | 仇鹏, 韩洋, 许建良, 等. 用于预测气流床煤气化的EDC模型参数研究[J]. 化工学报, 2023, 74(1): 428-437. |
Qiu P, Han Y, Xu J L, et al. Study of EDC parameters for predicting entrained flow coal gasification[J]. CIESC Journal, 2023, 74(1): 428-437. | |
38 | Zhang B B, Shen Z J, Liang Q F, et al. Modeling study of residence time of molten slag on the wall in an entrained flow gasifier[J]. Fuel, 2018, 212: 437-447. |
39 | 许建良. 气流床气化炉内多相湍流反应流动的实验研究与数值模拟[D]. 上海: 华东理工大学, 2008. |
Xu J L. Experimental research and numerical simulation of the multiphase turbulent reaction flow in entrained-flow gasifiers[D]. Shanghai: East China University of Science and Technology, 2008. | |
40 | 孙晓宇. 煤的热解气化过程模拟研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014. |
Sun X Y. Simulation study on pyrolysis and gasification process of coal[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014. | |
41 | 徐越, 吴一宁, 危师让. 基于Shell煤气化工艺的干煤粉加压气流床气化炉性能研究[J]. 西安交通大学学报, 2003, 37(11): 1132-1136. |
Xu Y, Wu Y N, Wei S R. Study on performance of dry feed entrained flow bed gasifier based on shell gasification technology[J]. Journal of Xi'an Jiaotong University, 2003, 37(11): 1132-1136. | |
42 | Zhang B B, Shen Z J, Liang Q F, et al. Modeling the slag flow and heat transfer with the effect of fluid-solid slag layer interface viscosity in an entrained flow gasifier[J]. Applied Thermal Engineering, 2017, 122: 785-793. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 812
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||