[1] |
LECH R F, LIM H C, JR C P L G, et al. Automatic control of the activated sludge process (Ⅰ): Development of a simplified dynamic model[J]. Water Research, 1978, 12 (2): 81-90.
|
[2] |
SANDERS D A, HUDSON A D, GAWTE H, et al. Computer modelling of single sludge systems for the computer aided design and control of activated sludge processes[J]. Microprocessing & Microprogramming, 1994, 40 (94): 867-870.
|
[3] |
MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review[J]. Water Research, 2013, 47 (3): 957-995.
|
[4] |
AMINA A, ELISE C, TOM S, et al. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant[J]. Water Research, 2013, 47 (2): 524-534.
|
[5] |
BELCHIOR C A C, RUI A M A, LANDECK J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control[J]. Computers & Chemical Engineering, 2012, 37 (4): 152-162.
|
[6] |
PIRES O C, PALMA C, COSTA J C, et al. Knowledge-based fuzzy system for diagnosis and control of an integrated biological wastewater treatment process[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2006, 53 (4/5): 313-320.
|
[7] |
TRAORE A, GRIEU S, PUIG S, et al. Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant[J]. Chemical Engineering Journal, 2005, 111 (1): 13-19.
|
[8] |
ZENG G M, QIN X S, HE L, et al. A neural network predictive control system for paper mill wastewater treatment[J]. Engineering Applications of Artificial Intelligence, 2003, 16 (2): 121-129.
|
[9] |
BARUCH I S, GEORGIEVA P, BARRERA-CORTES J, et al. Adaptive recurrent neural network control of biological wastewater treatment[J]. International Journal of Intelligent Systems, 2005, 20 (2): 173-193.
|
[10] |
QIAO J F. Recurrent neural network-based control for wastewater treatment process[M]//HUANG X Q, HAN H G. Advances in Neural Networks-ISNN 2012. Berlin Heidelberg: Springer, 2012: 496-506.
|
[11] |
许少鹏, 韩红桂, 乔俊飞. 基于模糊递归神经网络的污泥容积指数预测模型[J]. 化工学报, 2013, 64 (12): 4550-4556. XU S P, HAN H G, QIAO J F. Prediction of activated sludge bulking based on recurrent fuzzy neural network[J]. CIESC Journal, 2013, 64 (12): 4550-4556.
|
[12] |
HSU C F, CHENG K H. Recurrent fuzzy-neural approach for nonlinear control using dynamic structure learning scheme[J]. Neurocomputing, 2008, 71 (16): 3447-3459.
|
[13] |
CHEN C S. TSK-type self-organizing recurrent-neural-fuzzy control of linear microstepping motor drives[J]. IEEE Transactions on Power Electronics, 2010, 25 (9): 2253-2265.
|
[14] |
EL-SOUSY F F M. Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives[J]. Applied Soft Computing, 2014, 21 (8): 509-532.
|
[15] |
CHEN X, XUE A, PENG D, et al. Modeling of pH neutralization process using fuzzy recurrent neural network and DNA based NSGA-Ⅱ[J]. Journal of the Franklin Institute, 2014, 351 (7): 3847-3864.
|
[16] |
WU G D, ZHU Z W. An enhanced discriminability recurrent fuzzy neural network for temporal classification problems[J]. Fuzzy Sets & Systems, 2014, 237 (2): 47-62.
|
[17] |
WAI R J, LIN Y W. Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network[J]. Fuzzy Systems IEEE Transactions on, 2013, 21 (4): 688-701.
|
[18] |
彭永臻, 王之晖, 王淑莹. 基于BP神经网络的A/O脱氮系统外加碳源的仿真研究[J]. 化工学报, 2005, 56 (2): 296-300. PENG Y Z, WANG Z H, WANG S Y. Simulation of external carbon addition to anoxic-oxic process based on back-propagation neural network[J]. Journal of Chemical Industry and Engineering (China), 2005, 56 (2): 296-300.
|
[19] |
王伟, 王淑莹, 孙亚男, 等. 分段进水A/O工艺流量分配专家系统的建立与应用[J]. 化工学报, 2008, 59 (10): 2608-2615. WANG W, WANG S Y, SUN Y N, et al. Establishment and application of influent flow distribution expert system in step-feed A/O process[J]. Journal of Chemical Industry and Engineering (China), 2008, 59 (10): 2608-2615
|
[20] |
FLORES-ALSINA X, RODRIGUEZ-RODA I, SIN G, et al. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1)[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2009, 59 (3): 491-499.
|