[1] |
张冬至, 胡国清. 微机电系统关键技术及其研究进展[J]. 压电与声光, 2010, 32(3):513-520. ZHANG D Z, HU G Q. Key technologies of micro-electromechanical system and its recent progress[J]. Piezoelectrics & Acoustooptics, 2010, 32(3):513-520.
|
[2] |
陈勇华. 微机电系统的研究与展望[J]. 电子机械工程, 2011, 27(3):1-7. CHEN Y H. Development and prospect of micro-electromechanical system[J]. Electro-Mechanical Engineering, 2011, 27(3):1-7.
|
[3] |
李军予, 伍保峰, 张晓敏. 立方体纳卫星的发展及其启示[J]. 航天器工程, 2012, 21(3):80-87. LI J Y, WU B F, ZHANG X M. Development of cubesat and its enlightenment[J]. Spacecraft Engineering, 2012, 21(3):80-87.
|
[4] |
DUNN-RANKIN D, LEAL E M, WALTHER D C. Personal power system[J]. Prog. Energy Combust. Sci., 2005, 31(5/6):422-465.
|
[5] |
MARUTA K, TAKEDA K, SITZKI L, et al. Catalytic combustion in micro-channel for MEMS power generation[C]//The Third Asia-Pacific Conference on Combustion. Seoul, Korea, 2001:1-4.
|
[6] |
陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75.
|
[7] |
FERNANDEZ-PELLO A C. Micro-power generation using combustion:issues and approaches[J]. Proc. Combust. Inst., 2002, 29(1):883-899.
|
[8] |
SIRIGNANO W A, PHAM T K, DUNN-RANKIN D. Miniature-scale liquid-fuel-film combustor[J]. Proc. Combust. Inst., 2002, 29(1):925-931.
|
[9] |
ZAMASCHIKOV V V. Combustion of gases in thin-walled small diameter tubes[J]. Combust. Explos. Shock Waves, 1995, 31(1):20-22.
|
[10] |
MARUTA K. Micro and mesoscale combustion[J]. Proc. Combust. Inst., 2011, 33(1):125-130.
|
[11] |
WANG H O, LUO K, LU S Q, et al. Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor[J]. Int. J. Hydrogen Energy, 2011, 36(21):13838-13849.
|
[12] |
BEDRA L, RUTIGLIANO M, BALAT-PICHELIN M, et al. Atomic oxygen recombination on quartz at high temperature experiments and molecular dynamics simulation[J]. Langmuir, 2006, 22(17):7208-7216.
|
[13] |
MIESSE C M, MASEL R I, JENSEN C D, et al. Submillimeter-scale combustion[J]. AIChE Journal, 2004, 50(12):3206-3214.
|
[14] |
MARUTA K, TAKEDA K, AHN J, et al. Extinction limits of catalytic combustion in microchannels[J]. Proc. Combust. Inst., 2002, 29(1):957-963.
|
[15] |
KIM N I, AIZUMI S, YOKOMORI T, et al. Development and scale effects of small Swiss-roll combustors[J]. Proc. Combust. Inst., 2007, 31(2):3243-3250.
|
[16] |
曹彬, 陈光文, 袁权. 微通道反应器内氢气催化燃烧[J]. 化工学报, 2004, 55(1):42-47. CAO B, CHEN G W, YUAN Q. Catalytic combustion of hydrogen/air in microchannel reactor[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(1):42-47.
|
[17] |
张力, 闫云飞, 李丽仙,等. 微型燃烧器内甲烷预混催化燃烧的数值研究[J]. 化工学报, 2009, 60(3):627-633. ZHANG L, YAN Y F, LI L X, et al. Numerical investigation of premixed catalytic combustion of methane in micro-combustor[J]. CIESC Journal, 2009, 60(3):627-633.
|
[18] |
万建龙, 范爱武, 刘毅,等. 固体材料对微型钝体燃烧器吹熄极限的影响[J]. 化工学报, 2014, 65(3):1012-1017. WAN J L, FAN A W, LIU Y, et al. Effects of solid material on blow-off limit in micro bluff body combustor[J]. CIESC Journal, 2014, 65(3):1012-1017.
|
[19] |
KIM N I, YUN Y M, LEE M J. Non-premixed flame characteristics of opposed methane jets in coaxial narrow air steam tube[J]. Int. J. Heat Fluid Flow, 2010, 31(4):680-688.
|
[20] |
KIM N I. Numerical study of opposed non-premixed jet flames of methane in a coaxial narrow air tube[J]. Combust. Flame, 2012, 159(2):722-733.
|
[21] |
LI J, CHOU S K, YANG W M, et al. A numerical study on premixed micro-combustion of CH4-air mixture:effects of combustor size, geometry and boundary conditions on flame temperature[J]. Chem. Eng. J., 2009, 150(1):213-222.
|
[22] |
章熙民, 李惟毅, 李汛, 等. 高温水平圆管表面自然对流换热的研究[J]. 工程热物理学报, 1990, 11(1):56-61. ZHANG X M, LI W Y, LI X, et al. The study of heat convection on the surface of high temperature horizontal circular tube[J]. J. Eng. Thermophys., 1990, 11(1):56-61.
|
[23] |
SERGEEV O A, SHASHKOV A G, UMANSKⅡ A S. Thermophysical properties of quartz glass[J]. J. Eng. Phys. Thermophys., 1992, 43(6):1375-1383.
|
[24] |
SMOOKE M D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-air Flames[M]. Berlin:Springer-Verlag, 1991:1-28.
|
[25] |
SESHADRI K, BAI X S, PITSCH H, et al. Asymptotic analysis of the structure of moderately rich methane-air flames[J]. Combust. Flame, 1998, 113(4):589-602.
|
[26] |
CHEN J H, ECHEKKI T, KOLLMANN W. The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion[J]. Combust. Flame, 1999, 116(1/2):15-48.
|
[27] |
CLARAMUNT K, CÒNSUL R, PÉREZ-SEGARRA C D, et al. Multidimensional mathematical modeling and numerical investigation of co-flow partially premixed methane/air laminar flames[J]. Combust. Flame, 2005, 137(4):444-457.
|
[28] |
WU C Y, CHAO Y C, CHENG T S, et al. Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames[J]. Combust. Flame, 2009, 156(2):362-373.
|
[29] |
VOSS S, MENDES M A A, PEREIRA J M C, et al. Investigation on the thermal flame thickness for lean premixed combustion of low calorific H2/CO mixtures within porous inert media[J]. Proc. Combust. Inst., 2013, 35(2):3335-3342.
|
[30] |
PHAM T K, DUNN-RANKIN D, SIRIGNANO W A. Flame structure in small-scale liquid film combustors[J]. Proc. Combust. Inst., 2007, 31(2):3269-3275.
|
[31] |
WAN J L, YANG W, FAN A W, et al. A numerical investigation on combustion characteristics of H2/air mixture in a micro-combustor with wall cavities[J]. Int. J. Hydrogen Energy, 2014, 39(15):8138-8146.
|
[32] |
YOKOMORI T, MIZOMOTO M. Flame temperatures along a laminar premixed flame with a non-uniform stretch rate[J]. Combust. Flame, 2003, 135(4):489-502.
|
[33] |
MATALON M. On flame stretch[J]. Combust. Sci. Technol., 1983, 31(3/4):169-181.
|
[34] |
WANG P Y, WEHRMEYER J A, PITZ R W. Stretch rate of tubular premixed flames[J]. Combust. Flame, 2006, 145(1/2):401-414.
|
[35] |
WANG J H, WEI Z L, YU S B, et al. Effect of stretch and preferential diffusion on tip opening of laminar premixed Bunsen flames of syngas/air mixtures[J]. Fuel, 2015, 148(15):1-8.
|