[1] |
HENRY R E, FAUSKE H K. External cooling of a reactor vessel under severe accident conditions[J]. Nucl. Eng. Des., 1993, 139(1):31-43.
|
[2] |
REMPE J L, SUH K Y, CHEUNG F B, et al. In-vessel retention-recent efforts and future needs[C]//Proceedings of the Sixth International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety. Nara, Japan, 2004, Paper ID N6P045.
|
[3] |
REMPE J L, SUH K Y, CHEUNG F B, et al. Insights from investigations of in-vessel retention for high powered reactors[C]//Proceedings, 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics. Avignon, France, 2005, Paper No. 271.
|
[4] |
REMPE J L, SUH K Y, CHEUNG F B, et al. In-vessel retention strategy for high power reactors final report[R]. INEEL/EXT-04-02561, Idaho National Laboratory Report, 2005.
|
[5] |
VISHNEV I P. Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid[J]. Journal of Engineering Physics, 1973, 24(1):43-48.
|
[6] |
EL-GENK M S, GUO Z. Transient boiling from inclined and downward-facing surfaces in a saturated pool[J]. Int. J. Ref., 1993, 16(6):414-422.
|
[7] |
BRUSSTAR M J, MERTE J H, KELLER R B, et al. Effects of heater surface orientation on the critical heat flux (Ⅰ):An experimental evaluation of models for subcooled pool boiling[J]. Int. J. Heat Mass Trans., 1997, 40(17):4007-4019.
|
[8] |
KIM J, SUH K. One-dimensional critical heat flux concerning surface orientation and gap size effects[J]. Nucl. Eng. Des., 2003, 226(3):277-292.
|
[9] |
ROUGE S. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure[J]. Nucl. Eng. Des.,1997, 169(1/2/3):185-195.
|
[10] |
THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head[J]. Nucl. Eng. Des., 1997, 169(1):59-76.
|
[11] |
THEOFANOUS T G, TU J P, SALMASSI T, et al. Quantification of limits to coolability in ULPU-2000 configuration:CRSS-02.05.3[R/OL]. Santa Barbara:Center for Risk Studies and Safety University of California, 2002. http://pbadupws.nrc.gov/docs/ML0216/ML021620559.pdf.
|
[12] |
CHU T Y, BAINBRIDGE B L, SIMPSON R B, et al. Ex-vessel boiling experiments:laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention (Ⅰ):Observation of quenching of downward-facing surfaces[J]. Nucl. Eng. Des.,1997, 169(1/2/3):77-88.
|
[13] |
CHU T Y, BENTZ J H, SLEZAK S E, et al. Ex-vessel boiling experiments:laboratory-and reactor-scale testing of the flooded cavity concept for in-vessel core retention (Ⅱ):Reactor-scale boiling experiments of the flooded cavity concept for in-vessel core retention[J]. Nucl. Eng. Des., 1997, 169(1/2/3):89-99.
|
[14] |
HADDAD K H. An experimental and theoretical study of two-phase boundary layer flow on the outside of curved downward-facing surfaces[D]. PA:Pennsylvania State University, 1996.
|
[15] |
YANG J, DIZON M B, CHEUNG F B, et al. CHF enhancement by vessel coating for external reactor vessel cooling[J]. Nucl. Eng. Des., 2006, 236(10):1089-1098.
|
[16] |
NOH S W, SUH K Y. Critical heat flux in various inclined rectangular straight surface channels[J]. Exp. Therm. Fluid Sci., 2014, 52:1-11.
|
[17] |
NOH S W, SUH K Y. Critical heat flux for APR1400 lower head vessel during a severe accident[J]. Nucl. Eng. Des., 2013, 258:116-129.
|
[18] |
ZHONG D W, MENG J A, LI Z X, et al. Critical heat flux for downward-facing saturated pool boiling on pin fin surfaces[J]. Int. J. Heat Mass Trans., 2015, 87:201-211.
|
[19] |
HOWARD A H, MUDAWAR I. Orientation effects on pool boiling critical heat flux (CHF) and modeling of CHF for near-vertical surfaces[J]. Int. J. Heat Mass Trans., 1999, 42(9):1665-1688.
|
[20] |
KIM Y H, KIM S J, KIM J J, et al. Visualization of boiling phenomena in inclined rectangular gap[J]. Int. J. Mul. Flow, 2005, 31(5):618-642.
|