[1] |
YANG X, WANG R, FANE A G, et al. Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review [J]. Desalination and Water Treatment, 2013, 51 (16/17/18): 3604-3627.
|
[2] |
DELGADO S, DIAZ F, VERA L, et al. Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging [J]. Journal of Membrane Science, 2004, 228 (1): 55-63.
|
[3] |
LI N N, FANE A G, HO W W, et al. Advanced Membrane Technology and Applications [M]. New Jersey: John Wiley & Sons, 2011: 47-242.
|
[4] |
ZHUANG L W, GUO H F, WANG P H, et al. Study on the flux distribution in a dead-end outside-in hollow fiber membrane module [J]. Journal of Membrane Science, 2015, 495: 372-383.
|
[5] |
KIM J, DIGIANO F A. Defining critical flux in submerged membranes: influence of length-distributed flux [J]. Journal of Membrane Science, 2006, 280 (1): 752-761.
|
[6] |
LI X H, LI J X, WANG J, et al. Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules [J]. Journal of Membrane Science, 2014, 453: 18-26.
|
[7] |
LI X H, LI J X, WANG H, et al. A filtration model for prediction of local flux distribution and optimization of submerged hollow fiber membrane module [J]. AIChE Journal, 2015, 61 (12): 4377-4386.
|
[8] |
CHANG S, FANE A G. The effect of fibre diameter on filtration and flux distribution-relevance to submerged hollow fibre modules [J]. Journal of Membrane Science, 2001, 184 (2): 221-231.
|
[9] |
CHANG S, FANE A G, VIGNESWARAN S. Modeling and optimizing submerged hollow fiber membrane modules [J]. AIChE Journal, 2002, 48 (10): 2203-2212.
|
[10] |
CHANG S, FANE A G, WAITE T D. Analysis of constant permeate flow filtration using dead-end hollow fiber membranes [J]. Journal of Membrane Science, 2006, 268 (2): 132-141.
|
[11] |
GHIDOSSI R, VEYRET D, MOULIN P. Computational fluid dynamics applied to membranes: state of the art and opportunities [J]. Chemical Engineering and Processing: Process Intensification, 2006, 45 (6): 437-454.
|
[12] |
HAPPEL J. Viscous flow relative to arrays of cylinders [J]. AIChE Journal, 1959, 5 (2): 174-177.
|
[13] |
GÜNTHER J, SCHMITZ P, ALBASI C, et al. A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module [J]. Journal of Membrane Science, 2010, 348 (1): 277-286.
|
[14] |
GÜNTHER J, HOBBS D, ALBASI C, et al. Modeling the effect of packing density on filtration performances in hollow fiber microfiltration module: a spatial study of cake growth [J]. Journal of Membrane Science, 2012, 389: 126-136.
|
[15] |
TANSEL B, BAO W Y, TANSEL I N. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model [J]. Desalination, 2000, 129 (1): 7-14.
|
[16] |
SERRA C, CLIFTON M J, MOULIN P, et al. Dead-end ultrafiltration in hollow fiber modules: module design and process simulation [J]. Journal of Membrane Science, 1998, 145 (2): 159-172.
|
[17] |
MENDRET J, GUIGUI C, CABASSUD C, et al. Numerical investigations of the effect of non-uniform membrane permeability on deposit formation and filtration process [J]. Desalination, 2010, 263 (1/2/3): 122-132.
|
[18] |
ZHANG L Z. Flow maldistribution and performance deteriorations in membrane-based heat and mass exchangers [J]. Journal of Heat Transfer, 2009, 131 (11): 111801.
|
[19] |
ZHANG L Z, LI Z X, ZHONG T S, et al. Flow maldistribution and performance deteriorations in a cross flow hollow fiber membrane module for air humidification [J]. Journal of Membrane Science, 2013, 427: 1-9.
|
[20] |
LI Z X, ZHANG L Z. Flow maldistribution and performance deteriorations in a counter flow hollow fiber membrane module for air humidification/dehumidification [J]. International Journal of Heat and Mass Transfer, 2014, 74: 421-430.
|
[21] |
CHELLAM S, JACANGELO J G, BONACQUISTI T P. Modeling and experimental verification of pilot-scale hollow fiber, direct flow microfiltration with periodic backwashing [J]. Environmental Science & Technology, 1998, 32 (1): 75-81.
|