[1] |
王磊, 沈本贤, 徐亚荣. 连续式FCC柴油萃取-光催化氧化深度脱硫[J]. 化工学报, 2008, 59(12):3085-3089. WANG L, SHEN B X, XU Y R. Continuous deep desulfurization technology by extraction-photocatalytic oxidation for FCC diesel fuel[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(12):3085-3089.
|
[2] |
MA Y Z, TAO M, ZHANG X, et al. Hazard of H2S and SO2 contents in coalbed gas and natural gas[J]. Acta Geologica Sinica, 2008, 82(10):1408-1415.
|
[3] |
程军委. 降低硫磺回收装置烟气中SO2浓度措施的探讨[J]. 石油化工设计, 2014, 31(2):57-59. CHENG J W. A discussion of SO2 reduction methods in flue gas from sulfur recovery unit[J]. Petrochemical Design, 2014, 31(2):57-59.
|
[4] |
高巍, 于心玉, 赵建忠, 等. 金属离子对MgAlX复合氧化物类FCC硫转移剂性能的影响[J]. 化工学报, 2013, 64(4):1438-1443. GAO W, YU X Y, ZHAO J Z, et al. Effect of metal element in MgAlX complex oxides on its FCC sulfur transfer catalyst performance[J]. CIESC Journal, 2013, 64(4):1438-1443.
|
[5] |
康海涛. FCC再生烟气SOx转移剂的研究[D]. 济南:山东大学, 2012. KANG H T. Study of SOx transfer additives applied in FCC units[D]. Jinan:Shandong University, 2012.
|
[6] |
JIN S, JOHN A K. Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking flue gas[J]. Industrial & Engineering Chemistry Research, 1988, 27(8):1356-1360.
|
[7] |
李宝硕. 流化催化裂化再生烟气硫转移剂的研究[D]. 济南:山东大学, 2014. LI B S. Study of SOx transfer additives applied in fluid catalytic cracking units[D]. Jinan:Shandong University, 2014.
|
[8] |
BOUSSANT Y, CABODI I, MARLIN S. Fused grains of oxides comprising Al, Ti and Mg and ceramic products comprising such grains:US8715807[P]. 2014-06-05.
|
[9] |
PI Z, SHEN B, ZHAO J, et al. CuO, CeO2 modified Mg-Al spinel for removal of SO2 from FCC flue gas[J]. Industrial & Engineering Chemistry Research, 2015, 54(43):10622-10628.
|
[10] |
PI Z. Cu/Ce Modified catalyst additive for removal of SO2 from FCC flue gas[J]. Petroleum Processing and Petrochemicals, 2016, 47(2):65-68.
|
[11] |
FLOUTY R, ABI-AAD E, SIFFERT S, et al. Formation of cereous sulphate phase upon interaction of SO2 with ceria at room temperature[J]. Journal of Thermal Analysis & Calorimetry, 2003, 73(3):727-734.
|
[12] |
MIKHAIL Y S, KALINKIN A V, PASHIS A V, et al. Interaction of Al2O3 and CeO2 surfaces with SO2 and SO2+O2 studied by X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(23):11712-11719.
|
[13] |
STACCHIOLA D J, SENANAYAKE S D, PING L, et al. Fundamental studies of well-defined surfaces of mixed-metal oxides:special properties of MO(x)/TiO2(110)(M=V, Ru, Ce, or W)[J]. Chemical Reviews, 2013, 113(6):4373-4390.
|
[14] |
朱仁发, 李承烈. FCC再生烟气的脱硫助剂研究进展[J].化工进展, 2000, 19(3):22-24. ZHU R F, LI C L. The research progress of De-SOx additives in FCC flue gas[J]. Chemical Industry and Engineering Progress, 2000, 19(3):22-24.
|
[15] |
LUO J J, ZHA G S, WANG K K, et al. Research progress of origin of ferromagnetic in nanoparticle CeO2[J]. Advances in Condensed Matter Physics, 2013, 1(2):1-4.
|
[16] |
蒋仕宇, 滕波涛, 鲁继青, 等. 甲醛在CeO2(111)表面吸附的密度泛函理论研究[J]. 物理化学学报, 2008, 24(11):2025-2031. JIANG S Y, TENG B T, LU J Q, et al. A density functional theory of formaldehyde adsorption on CeO2(111) surface[J]. Acta Physico.-Chimica. Sinica, 2008, 24(11):2025-2031.
|
[17] |
KOZLOV S M, NEYMAN K M. O vacancies on steps on the CeO2(111) surface[J]. Physical Chemistry Chemical Physics, 2014, 16(17):7823-7829.
|
[18] |
MURGIDA G E, GANDUGLIA-PIROVANO M V. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations[J]. Physical Review Letters, 2013, 110(24):246101-1-246101-5.
|
[19] |
王清高, 杨宗献, 危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究[J]. 物理化学学报, 2009, 25(12):2513-2518. WANG Q G, YANG Z X, WEI S Y. DFT+U study on the interaction of water molecule and ceria(111) surface[J]. Acta Physico.-Chimica. Sinica, 2009, 25(12):2513-2518.
|
[20] |
XIE J Q, HU W, WANG Y. Preparation of CeO2 nanoparticle by the method of reserve microemulsion and characterization of the nanoparticle[J]. Journal of Functional Materials, 2007, 38(A06):2093-2095.
|
[21] |
KANTCHEVA M, CAYIRTEPE I, NAYDENOV A, et al. FT-IR spectroscopic investigation of the effect of SO2 on the SCR of NOx with propene over ZrO2-Nb2O5 catalyst[J]. Catalysis Today, 2011, 176(1):437-440.
|
[22] |
LONG R Q, YANG R T. FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. Journal of Catalysis, 2000, 190(1):22-31.
|
[23] |
DOSUMOV K, POPOVA N M, UMBETKALIEV A K, et al. IR spectroscopic and thermal desorption studies of the interaction of the SO2+O2 mixture with the 9% Ni-Cu-Cr/2% Ce/(θ+α)-Al2O3 catalyst[J]. Russian Journal of Physical Chemistry, 2012, 86(10):1609-1613.
|
[24] |
韩伟, 林仁存, 谢兆雄, 等. CeO2乙苯脱氢催化剂的XRD、XPS研究[J]. 厦门大学学报(自然科学版), 2008, 47(5):701-704. HAN W, LIN R C, XIE Z X, et al. The XRD, XPS study on CeO2 ethylbenzene dehydrogenation catalyst[J]. Journal of Xiamen University(Nature Science), 2008, 47(5):701-704.
|
[25] |
FERRIZZ R M, GORTE R J, VOHS J M. TPD and XPS investigation of the interaction of SO2 with model ceria catalysts[J]. Catalysis Letters, 2002, 82(1):123-129.
|
[26] |
刘亚明, 束航, 徐齐胜, 等. SCR脱硝过程中SO2催化氧化的原位红外研究[J]. 燃料化学学报, 2015, 43(8):1018-1024. LIU Y M, SHU H, XU Q S, et al. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8):1018-1024.
|
[27] |
LIU Y, CEN W, WU Z, et al. SO2 Poisoning structures and the effects on pure and Mn doped CeO2:a first principles investigation[J]. Journal of Physical Chemistry C, 2012, 116(43):22930-22937.
|
[28] |
李俊. SO2、NO2在金属表面吸附和分解的密度泛函研究[D]. 重庆:西南大学, 2011. LI J. DFT study on the adsorption and decomposition of SO2 and NO2 on metal surface[D]. Chongqing:Southwest University, 2011.
|