CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2228-2238.DOI: 10.11949/0438-1157.20230029
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shaoyun CHEN1(), Dong XU1, Long CHEN1, Yu ZHANG1, Yuanfang ZHANG1, Qingliang YOU1, Chenglong HU1(
), Jian CHEN2
Received:
2023-01-11
Revised:
2023-03-02
Online:
2023-06-29
Published:
2023-05-05
Contact:
Chenglong HU
陈韶云1(), 徐东1, 陈龙1, 张禹1, 张远方1, 尤庆亮1, 胡成龙1(
), 陈建2
通讯作者:
胡成龙
作者简介:
陈韶云(1984—),女,博士,副教授,cescsy@jhun.edu.cn
基金资助:
CLC Number:
Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays[J]. CIESC Journal, 2023, 74(5): 2228-2238.
陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238.
1 | Hao Z S, Li N, Cao H J, et al. Modified Ag nanoparticles on the regular array structure to improve the optical properties[J]. Journal of Luminescence, 2022, 243: 118684. |
2 | Lin B, Yang G D, Wang L Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angewandte Chemie, 2019, 58(14): 4587-4591. |
3 | Hoang S, Gao P X. Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling[J]. Advanced Energy Materials, 2016, 6(23): 1600683. |
4 | Zhang H, Liu Y, Shahidan M F S, et al. Direct assembly of vertically oriented, gold nanorod arrays[J]. Advanced Functional Materials, 2021, 31(6): 2006753. |
5 | Fu Y, Mo A C. A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications[J]. Nanoscale Research Letters, 2018, 13(1): 187. |
6 | Yang K, Yao X, Liu B W, et al. Metallic plasmonic array structures: principles, fabrications, properties, and applications[J]. Advanced Materials, 2021, 33(50): e2007988. |
7 | Yu M, Long Y Z, Sun B, et al. Recent advances in solar cells based on one-dimensional nanostructure arrays[J]. Nanoscale, 2012, 4(9): 2783-2796. |
8 | Choi T M, Lee G H, Kim Y S, et al. Photonic microcapsules containing single-crystal colloidal arrays with optical anisotropy[J]. Advanced Materials, 2019, 31(18): e1900693. |
9 | Li J, Bao R, Tao J, et al. Recent progress in flexible pressure sensor arrays: from design to applications[J]. Journal of Materials Chemistry C, 2018, 6(44): 11878-11892. |
10 | Chang H X, Yuan Y, Shi N L, et al. Electrochemical DNA biosensor based on conducting polyaniline nanotube array[J]. Analytical Chemistry, 2007, 79(13): 5111-5115. |
11 | Chen Y F. Nanofabrication by electron beam lithography and its applications: a review[J]. Microelectronic Engineering, 2015, 135: 57-72. |
12 | Wu T, Lin Y W. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography[J]. Applied Surface Science, 2018, 435: 1143-1149. |
13 | Sloyan K, Melkonyan H, Apostoleris H, et al. A review of focused ion beam applications in optical fibers[J]. Nanotechnology, 2021, 32(47): 472004. |
14 | Li P, Chen S Y, Dai H F, et al. Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications[J]. Nanoscale, 2021, 13(3): 1529-1565. |
15 | Huang J Y, Zhang K Q, Lai Y K. Fabrication, modification, and emerging applications of TiO 2 nanotube arrays by electrochemical synthesis: a review[J]. International Journal of Photoenergy, 2013, 2013: 1-19. |
16 | Wei W B, Bai F, Fan H Y. Oriented gold nanorod arrays: self-assembly and optoelectronic applications[J]. Angewandte Chemie, 2019, 58(35): 11956-11966. |
17 | Hanske C, Hill E H, Vila-Liarte D, et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11763-11771. |
18 | Li Y, Duan G T, Liu G Q, et al. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications[J]. Chemical Society Reviews, 2013, 42(8): 3614-3627. |
19 | Doludenko I M, Volchkov I S, Turenko B A, et al. Electrical properties arrays of intersecting of nanowires obtained in the pores of track membranes[J]. Materials Chemistry and Physics, 2022, 287: 126285. |
20 | He G, Chen H J, Liu D, et al. Fabrication of various structures of nanostraw arrays and their applications in gene delivery[J]. Advanced Materials Interfaces, 2018, 5(10): 1701535. |
21 | Zhang H M, Zhou M, Zhao H P, et al. Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion[J]. Nanotechnology, 2021, 32: 502006. |
22 | Wei Q L, Fu Y Q, Zhang G X, et al. Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion[J]. Nano Energy, 2019, 55: 234-259. |
23 | Lin C H, Polisetty S, O’Brien L, et al. Size-tuned ZnO nanocrucible arrays for magnetic nanodot synthesis via atomic layer deposition-assisted block polymer lithography[J]. ACS Nano, 2015, 9(2): 1379-1387. |
24 | Kuila B K, Nandan B, Böhme M, et al. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties[J]. Chemical Communications, 2009(38): 5749-5751. |
25 | Kim J Y, Liu G C, Shim G Y, et al. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes[J]. Advanced Functional Materials, 2020, 30(36): 2004210. |
26 | Geng B, Yan F, Liu L N, et al. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting[J]. Chemical Engineering Journal, 2021, 406: 126815. |
27 | Zhou Y, Wang X X, Acauan L, et al. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays[J]. Advanced Materials, 2019, 31(30): e1901916. |
28 | Liu D F, Xiang Y J, Wu X C, et al. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers[J]. Nano Letters, 2006, 6(10): 2375-2378. |
29 | Kim D, Jang D, Lee H, et al. Two-dimensional non-close-packed arrays of polystyrene microspheres prepared by controlling the size of polystyrene microspheres[J]. Polymer, 2019, 185: 121938. |
30 | Chen S Y, Liu B, Zhang X Y, et al. Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor[J]. Electrochimica Acta, 2019, 300: 373-379. |
31 | Peng S, Liu B, Zhang X Y, et al. Large-area polyaniline nanorod growth on a monolayer polystyrene nanosphere array as an electrode material for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(12): 14766-14777. |
32 | Wang Y, Xu S Q, Liu W F, et al. Facile fabrication of urchin-like polyaniline microspheres for electrochemical energy storage[J]. Electrochimica Acta, 2017, 254: 25-35. |
33 | Wang Y, Xu S Q, Cheng H, et al. Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method[J]. Applied Surface Science, 2018, 428: 315-321. |
34 | Liu B, Zhang X Y, Tian D, et al. In situ growth of oriented polyaniline nanorod arrays on the graphite flake for high-performance supercapacitors[J]. ACS Omega, 2020, 5(50): 32395-32402. |
35 | Chen S Y, Cheng H, Tian D, et al. Controllable synthesis, core-shell nanostructures, and supercapacitor performance of highly uniform polypyrrole/polyaniline nanospheres[J]. ACS Applied Energy Materials, 2021, 4(4): 3701-3711. |
36 | Tian D, Cheng H, Li Q, et al. The ordered polyaniline nanowires wrapped on the polypyrrole nanotubes as electrode materials for electrochemical energy storage[J]. Electrochimica Acta, 2021, 398: 139328. |
37 | Edwards H G M, Brown D R, Dale J A, et al. Raman spectroscopy of sulfonated polystyrene resins[J]. Vibrational Spectroscopy, 2000, 24(2): 213-224. |
38 | Hu C L, Chen X D, Chen J, et al. Observation of mutual diffusion of macromolecules in PS/PMMA binary films by confocal Raman microscopy[J]. Soft Matter, 2012, 8(17): 4780-4787. |
39 | Mikhailova S S, Mykhaylyk O M, Dorfman A M, et al. XPS study of finely dispersed iron powders modified by radiation-grafted acrylamide[J]. Surface and Interface Analysis, 2000, 29(8): 519-523. |
40 | Chen S Y, Hu C L, Zhang W H, et al. A self-assembling octahedral aggregate of poly(methyl methacrylate) nanospheres on a silver substrate[J]. ChemPlusChem, 2016, 81(2): 161-165. |
41 | Chowdhury A N, Jesmeen S R, Hossain M M. Removal of dyes from water by conducting polymeric adsorbent[J]. Polymers for Advanced Technologies, 2004, 15(11): 633-638. |
42 | Ayad M M, Abu El-Nasr A, Stejskal J. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 1964-1969. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[10] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[14] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[15] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 321
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||