CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 253-259.doi: 10.11949/j.issn.0438-1157.20160658

Previous Articles     Next Articles

Molecular dynamics simulation on effect of different carboxylic acid group contents on norbornene derivatives proton exchange membranes bearing bifunctional groups

FENG Zhiming1,2, LI Weiwei2, LI Xue2, ZHAO Yang2, XIE Xiaofeng2, CHAI Chunpeng1, LUO Yunjun1   

  1. 1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2016-05-11 Revised:2016-05-23 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51573083).


A bifunctional group proton exchange membrane(PEM) was constructed in this paper with sulfonic and carboxylic acid groups based on polynorbornenes on the software platform of Material Studio (MS). The effect on the properties of PEM were studied by changing the different proportion of three structural units 4-(bicyclo[2.2.1]hept-5-en-2-yl) benzene-1-sulfonylchloride (NBSC), dimethyl 8,9,10-rinorborn-5-ene-2,3-dicarboxylate (DCNM) and DCNM-N. Meanwhile, the microscopic structure of the membranes and the transport properties of the small molecules were analyzed. The result shows that the MSD of H2O as well as H3O+ and diffusion coefficients augment gradually with the reducing of carboxylic acid group contents which are the results of the hydrogen bonds interaction among the different components. Besides, under the synergistic action of sulfonic acid and carboxylic acid at 298 K, the proton conductivitise of the three proton exchange membranes are 22.75, 46.14 and 56.77 mS·cm-1 respectively which indicates that proton conductivity rises with the aggrandizement of the number of carboxylic acid group, while the growth rate increases first and then decreases.

Key words: molecular dynamics simulation, bifunctional groups, norbornene derivatives, proton exchange membrane

CLC Number: 

  • TQ316.341
[1] ZHANG H, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012, 112(5):2780-832.
[2] CHI H P, CHANG H L. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. Progress in Polymer Science, 2011, 36(11):1443-1498.
[3] GAO Y, ROBERTSON G P, GUIVER M D, et al. Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials[J]. Journal of Hazardous Materials, 2016, 305(25):219-228.
[4] LIN J F, KAMAVARAM V, KANNAN A M. Synthesis and characterization of carbon nanotubes supported platinum nanocatalyst for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(2):466-470.
[5] SLADE S M, RALPH T R, LEON C P D, et al. The ionic conductivity of a nafion 1100 series of proton-exchange membranes re-cast from butan-1-ol and propan-2-ol[J]. Fuel Cells, 2010, 10(4):567-574.
[6] WU B, PAN J, GE L, et al. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition.[J]. Scientific Reports, 2014, 4(38):4334-4334.
[7] IWAI Y, YAMANISHI T. Thermal stability of ion-exchange Nafion N117CS membranes[J]. Polymer Degradation & Stability, 2009, 94(4):679-687.
[8] NAWN G, PACE G, LAVINA S, et al. Nanocomposite membranes based on polybenzimidazole and ZrO2, for high-temperature proton exchange membrane fuel cells[J]. Chemsuschem, 2015, 8(8):1381-1393.
[9] 纪晓波. 质子交换膜中甲醇迁移及其机理的分子动力学模拟研究[D]. 上海:上海大学, 2009. JI X B. Molecular dynamics simulation of methanol transport and mechanism in proton exchange membrane[D]. Shanghai:Shanghai University, 2009.
[10] 陈清. 分子模拟方法在高分子质子交换膜和表面活性剂中的若干应用研究[D]. 上海:上海交通大学, 2011. CHEN Q. Molecular simulation on proton exchange and surfactant system[D]. Shanghai:Shanghai Jiao Tong University, 2011.
[11] VENKATNATHAN A, DEVANNTHAN R, DUPUIS M. Atomistic simulations of hydrated Nafion and temperature effects on hydronium ion mobility[J]. Journal of Physical Chemistry B, 2007, 111(25):7234-44.
[12] CHANG K S, HSIUNG C C, LIN C C, et al. Residual solvent effects on free volume and performance of fluorinated polyimide membranes:a molecular simulation study[J]. Journal of Physical Chemistry B, 2009, 113(30):10159-69.
[13] 赵阳, 李雪, 冯志明, 等. 降冰片烯类聚合物用于离子交换膜的研究进展[J]. 化工学报, 2015, 66(S1):10-16. ZHAO Y, LI X, FENG Z M, et al. Progress of ion exchange membrane based on poly(norbornene)s derivatives via ring-opening metathesis polymerization[J]. CIESC Journal, 2015, 66(S1):10-16.
[14] 冯志明, 赵阳, 李雪, 等. 一种新型聚降冰片烯类无规共聚物的合成与表征[J]. 化工学报, 2015, 66(S2):439-444. FENG Z M, ZHAO Y, LI X, et al. Synthesis and characterization of a novel norbornene based copolymer[J]. CIESC Journal, 2015, 66(S2):439-444.
[15] LIN H, ZHAO C, MA W, et al. Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes[J]. Journal of Membrane Science, 2009, 345(1/2):242-248.
[16] 林海丹. 磺化聚芳醚酮类质子交换膜材料的制备及性能研究[D]. 长春:吉林大学, 2011. LIN H D. Proton-conducting sulfonated pol(aryl ether ketone) membranes synthesis and properties studies[D]. Changchun:Jilin University, 2011.
[17] IZQUIERDO-GIL M A, BARRAGAN V M, VILLALUENGA J P G, et al. Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses[J]. Chemical Engineering Science, 2012, 72(16):1-9.
[18] KUSOGLU A, KIENITZ B, WEBER A Z. Understanding the effects of compression and constraints on water uptake of fuel cell membranes[J]. Journal of the Electrochemical Society, 2011, 158(12):B1504-B1514.
[19] KALISVAART W P, FRITZSCHE H, MERIDA W. Water uptake and swelling hysteresis in a Nafion thin film measured with neutron reflectometry[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2015, 31(19):5416-22.
[20] 赵玉彬, 王树博, 赵阳,等. 降冰片烯类季铵型阴离子交换膜的制备[J]. 化工学报, 2015, 66(S1):338-342. ZHAO Y B, WANG S B, XIE X F, et al. Preparation of quaternary ammonium functionalized norbornene derivatives anion exchange membrane[J]. CIESC Journal, 2015, 66(S1):338-342.
[21] 陈磊, 林鸿, 陶文铨. 温度对质子交换膜扩散性能影响的分子动力学模拟[J]. 西安交通大学学报, 2011, 45(7):1-4. CHEN L, LIN H, TAO W Q. Molecular dynamics simulation of temperature effect on diffusion process of water and proton exchange membrane[J]. Journal of Xi'an Jiaotong University, 2011, 45(7):1-4.
[22] 陈磊, 林鸿, 陶文铨. PEM内水和质子扩散的分子动力学模拟[J]. 工程热物理学报, 2010, 31(11):1917-1920. CHEN L, LIN H, TAO W Q. Diffusion process of water and proton in proton exchange membrane using molecular dynamics simulation[J]. Journal of Engineering Thermophysics, 2010, 31(11):1917-1920.
[23] KAWAI K, MABUCHI T, TOKUMASU T. Molecular simulation of proton conductivity in Nafion membrane contaminated with ferrous ion[J]. ECS Transactions, 2015, 69(17):579-586.
[24] BAHLAKEH G, NIKAZAR M. Molecular dynamics simulation analysis of hydration effects on microstructure and transport dynamics in sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) fuel cell membranes[J]. International Journal of Hydrogen Energy, 2012, 37(17):12714-12724
[25] MERINOV B V, Ⅲ W A G. Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide-polymer electrolyte for application in electrochemical devices[J]. Journal of Membrane Science, 2013, 431(11):79-85.
[26] GAHLOT S, KULSHRETHA V. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM[J]. ACS Applied Materials & Interfaces, 2015, 7(1):K43-K43.
[27] SRINOPHKUN T, MARKUNCHAN S. Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation[J]. Carbohydrate Polymers, 2012, 88(1):194-200.
[28] AND A V, NEIMARK A V. Molecular dynamics simulation of Nafion oligomer solvation in equimolar methanol-water mixture[J]. Journal of Physical Chemistry B, 2001, 105(32):7830-7834.
[29] LI S, QIAN W, TAO F M. Ionic dissociation of methanesulfonic acid in small water clusters[J]. Chemical Physics Letters, 2007, 438(4/5/6):190-195.
[30] LEOPOLD K R. Hydrated acid clusters.[J]. Annual Review of Physical Chemistry, 2011, 62(62):327-49.
[31] HAN K W, KO K H, ABUHAKMEH K, et al. Molecular dynamics simulation study of a polysulfone-based anion exchange membrane in comparison with the proton exchange membrane[J]. Journal of Physical Chemistry C, 2014, 118(24):12577-12587.
[32] LIN H, ZHAO C, HUI N. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells[J]. Journal of Power Sources, 2010, 195(11):3380-3385.
[1] Yongquan ZHANG, Weiwei XUAN. Mechanism of alkali metal/(FeO+CaO+MgO) influence on the structure and viscosity of silicate ash slag [J]. CIESC Journal, 2023, 74(4): 1764-1771.
[2] Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993.
[3] Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857.
[4] LI Hui, YANG Zhengjin, XU Tongwen. Research progress of high temperature proton exchange membranes [J]. CIESC Journal, 2021, 72(1): 132-142.
[5] Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431.
[6] Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168.
[7] He ZHENG, Shengjiang YANG, Yongchao ZHENG, Yan CUI, Xuan GUO, Jinyi ZHONG, Jian ZHOU. Molecular dynamics simulation of denaturation of DhaA induced by urea and dimethyl sulfoxide [J]. CIESC Journal, 2019, 70(11): 4337-4345.
[8] QI Chang, LU Diannan, LIU Yongmin. Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field [J]. CIESC Journal, 2018, 69(8): 3338-3347.
[9] XU Shang, ZHAO Lingling, CAI Zhuangli, CHEN Chao. Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride [J]. CIESC Journal, 2017, 68(9): 3321-3327.
[10] NAN Yiling, KONG Xian, LI Jipeng, LU Diannan. Non-equilibrium molecular dynamics simulation of water flow inside nano-slit [J]. CIESC Journal, 2017, 68(5): 1786-1793.
[11] GAO Jinjin, LI Xue, ZHAO Yubin, LI Weiwei, ZHAO Yang, WANG Shubo, XIE Xiaofeng, ZHANG Zhenlin. Preparation of proton exchange membrane by radiation-induced grafting of PVDF film [J]. CIESC Journal, 2016, 67(S1): 384-389.
[12] LI Xue, ZHAO Yang, GAO Jinjin, LI Weiwei, WANG Shubo, XIE Xiaofeng. Synthesis, characterization, simulation of 4-styrenesulfonyl chloride and its application in preparation of proton exchange membrane through radiation induced grafting [J]. CIESC Journal, 2016, 67(S1): 390-395.
[13] SHAN Chenxu, CAO Xulong, ZHU Yangwen, LIU Kun, QU Guangmiao, LÜ Pengfei, XUE Chunlong, DING Wei. Molecular dynamics simulation for interface behavior of octylphenol polyoxyethylene ether sulfonate [J]. CIESC Journal, 2016, 67(4): 1416-1423.
[14] FENG Zhiming, ZHAO Yang, LI Xue, XIE Xiaofeng, CHAI Chunpeng, LUO Yunjun. Synthesis and characterization of a novel norbornene based copolymer [J]. CIESC Journal, 2015, 66(S2): 439-444.
[15] FEI Zhejun, JUNG Minsuk, ZHANG Xuefei, WANG Shubo, XIE Xiaofeng, YUN Sukhwan, HUANG Haiyan. Properties of fluorinated poly fluorene ether oxadiazole proton exchange membrane [J]. CIESC Journal, 2015, 66(S2): 445-449.
Full text



No Suggested Reading articles found!